ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imacnvcnv Unicode version

Theorem imacnvcnv 5075
Description: The image of the double converse of a class. (Contributed by NM, 8-Apr-2007.)
Assertion
Ref Expression
imacnvcnv  |-  ( `' `' A " B )  =  ( A " B )

Proof of Theorem imacnvcnv
StepHypRef Expression
1 rescnvcnv 5073 . . 3  |-  ( `' `' A  |`  B )  =  ( A  |`  B )
21rneqi 4839 . 2  |-  ran  ( `' `' A  |`  B )  =  ran  ( A  |`  B )
3 df-ima 4624 . 2  |-  ( `' `' A " B )  =  ran  ( `' `' A  |`  B )
4 df-ima 4624 . 2  |-  ( A
" B )  =  ran  ( A  |`  B )
52, 3, 43eqtr4i 2201 1  |-  ( `' `' A " B )  =  ( A " B )
Colors of variables: wff set class
Syntax hints:    = wceq 1348   `'ccnv 4610   ran crn 4612    |` cres 4613   "cima 4614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624
This theorem is referenced by:  casedm  7063  caseinl  7068  caseinr  7069  djudm  7082  hmeoima  13104  hmeocld  13106  hmeontr  13107
  Copyright terms: Public domain W3C validator