ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domeng Unicode version

Theorem domeng 6549
Description: Dominance in terms of equinumerosity, with the sethood requirement expressed as an antecedent. Example 1 of [Enderton] p. 146. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
domeng  |-  ( B  e.  C  ->  ( A  ~<_  B  <->  E. x
( A  ~~  x  /\  x  C_  B ) ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem domeng
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 breq2 3871 . 2  |-  ( y  =  B  ->  ( A  ~<_  y  <->  A  ~<_  B ) )
2 sseq2 3063 . . . 4  |-  ( y  =  B  ->  (
x  C_  y  <->  x  C_  B
) )
32anbi2d 453 . . 3  |-  ( y  =  B  ->  (
( A  ~~  x  /\  x  C_  y )  <-> 
( A  ~~  x  /\  x  C_  B ) ) )
43exbidv 1760 . 2  |-  ( y  =  B  ->  ( E. x ( A  ~~  x  /\  x  C_  y
)  <->  E. x ( A 
~~  x  /\  x  C_  B ) ) )
5 vex 2636 . . 3  |-  y  e. 
_V
65domen 6548 . 2  |-  ( A  ~<_  y  <->  E. x ( A 
~~  x  /\  x  C_  y ) )
71, 4, 6vtoclbg 2694 1  |-  ( B  e.  C  ->  ( A  ~<_  B  <->  E. x
( A  ~~  x  /\  x  C_  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1296   E.wex 1433    e. wcel 1445    C_ wss 3013   class class class wbr 3867    ~~ cen 6535    ~<_ cdom 6536
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-xp 4473  df-rel 4474  df-cnv 4475  df-dm 4477  df-rn 4478  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-en 6538  df-dom 6539
This theorem is referenced by:  mapdom1g  6643
  Copyright terms: Public domain W3C validator