ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domeng Unicode version

Theorem domeng 6639
Description: Dominance in terms of equinumerosity, with the sethood requirement expressed as an antecedent. Example 1 of [Enderton] p. 146. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
domeng  |-  ( B  e.  C  ->  ( A  ~<_  B  <->  E. x
( A  ~~  x  /\  x  C_  B ) ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem domeng
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 breq2 3928 . 2  |-  ( y  =  B  ->  ( A  ~<_  y  <->  A  ~<_  B ) )
2 sseq2 3116 . . . 4  |-  ( y  =  B  ->  (
x  C_  y  <->  x  C_  B
) )
32anbi2d 459 . . 3  |-  ( y  =  B  ->  (
( A  ~~  x  /\  x  C_  y )  <-> 
( A  ~~  x  /\  x  C_  B ) ) )
43exbidv 1797 . 2  |-  ( y  =  B  ->  ( E. x ( A  ~~  x  /\  x  C_  y
)  <->  E. x ( A 
~~  x  /\  x  C_  B ) ) )
5 vex 2684 . . 3  |-  y  e. 
_V
65domen 6638 . 2  |-  ( A  ~<_  y  <->  E. x ( A 
~~  x  /\  x  C_  y ) )
71, 4, 6vtoclbg 2742 1  |-  ( B  e.  C  ->  ( A  ~<_  B  <->  E. x
( A  ~~  x  /\  x  C_  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331   E.wex 1468    e. wcel 1480    C_ wss 3066   class class class wbr 3924    ~~ cen 6625    ~<_ cdom 6626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-xp 4540  df-rel 4541  df-cnv 4542  df-dm 4544  df-rn 4545  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-en 6628  df-dom 6629
This theorem is referenced by:  mapdom1g  6734
  Copyright terms: Public domain W3C validator