ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domeng GIF version

Theorem domeng 6806
Description: Dominance in terms of equinumerosity, with the sethood requirement expressed as an antecedent. Example 1 of [Enderton] p. 146. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
domeng (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem domeng
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq2 4033 . 2 (𝑦 = 𝐵 → (𝐴𝑦𝐴𝐵))
2 sseq2 3203 . . . 4 (𝑦 = 𝐵 → (𝑥𝑦𝑥𝐵))
32anbi2d 464 . . 3 (𝑦 = 𝐵 → ((𝐴𝑥𝑥𝑦) ↔ (𝐴𝑥𝑥𝐵)))
43exbidv 1836 . 2 (𝑦 = 𝐵 → (∃𝑥(𝐴𝑥𝑥𝑦) ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
5 vex 2763 . . 3 𝑦 ∈ V
65domen 6805 . 2 (𝐴𝑦 ↔ ∃𝑥(𝐴𝑥𝑥𝑦))
71, 4, 6vtoclbg 2821 1 (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2164  wss 3153   class class class wbr 4029  cen 6792  cdom 6793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-dm 4669  df-rn 4670  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-en 6795  df-dom 6796
This theorem is referenced by:  mapdom1g  6903
  Copyright terms: Public domain W3C validator