ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domeng GIF version

Theorem domeng 6576
Description: Dominance in terms of equinumerosity, with the sethood requirement expressed as an antecedent. Example 1 of [Enderton] p. 146. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
domeng (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem domeng
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq2 3879 . 2 (𝑦 = 𝐵 → (𝐴𝑦𝐴𝐵))
2 sseq2 3071 . . . 4 (𝑦 = 𝐵 → (𝑥𝑦𝑥𝐵))
32anbi2d 455 . . 3 (𝑦 = 𝐵 → ((𝐴𝑥𝑥𝑦) ↔ (𝐴𝑥𝑥𝐵)))
43exbidv 1764 . 2 (𝑦 = 𝐵 → (∃𝑥(𝐴𝑥𝑥𝑦) ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
5 vex 2644 . . 3 𝑦 ∈ V
65domen 6575 . 2 (𝐴𝑦 ↔ ∃𝑥(𝐴𝑥𝑥𝑦))
71, 4, 6vtoclbg 2702 1 (𝐵𝐶 → (𝐴𝐵 ↔ ∃𝑥(𝐴𝑥𝑥𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1299  wex 1436  wcel 1448  wss 3021   class class class wbr 3875  cen 6562  cdom 6563
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-xp 4483  df-rel 4484  df-cnv 4485  df-dm 4487  df-rn 4488  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-en 6565  df-dom 6566
This theorem is referenced by:  mapdom1g  6670
  Copyright terms: Public domain W3C validator