ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapdom1g Unicode version

Theorem mapdom1g 6813
Description: Order-preserving property of set exponentiation. (Contributed by Jim Kingdon, 15-Jul-2022.)
Assertion
Ref Expression
mapdom1g  |-  ( ( A  ~<_  B  /\  C  e.  V )  ->  ( A  ^m  C )  ~<_  ( B  ^m  C ) )

Proof of Theorem mapdom1g
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 reldom 6711 . . . . . 6  |-  Rel  ~<_
21brrelex2i 4648 . . . . 5  |-  ( A  ~<_  B  ->  B  e.  _V )
3 domeng 6718 . . . . 5  |-  ( B  e.  _V  ->  ( A  ~<_  B  <->  E. x
( A  ~~  x  /\  x  C_  B ) ) )
42, 3syl 14 . . . 4  |-  ( A  ~<_  B  ->  ( A  ~<_  B 
<->  E. x ( A 
~~  x  /\  x  C_  B ) ) )
54ibi 175 . . 3  |-  ( A  ~<_  B  ->  E. x
( A  ~~  x  /\  x  C_  B ) )
65adantr 274 . 2  |-  ( ( A  ~<_  B  /\  C  e.  V )  ->  E. x
( A  ~~  x  /\  x  C_  B ) )
7 simpl 108 . . . 4  |-  ( ( A  ~~  x  /\  x  C_  B )  ->  A  ~~  x )
8 enrefg 6730 . . . . 5  |-  ( C  e.  V  ->  C  ~~  C )
98adantl 275 . . . 4  |-  ( ( A  ~<_  B  /\  C  e.  V )  ->  C  ~~  C )
10 mapen 6812 . . . 4  |-  ( ( A  ~~  x  /\  C  ~~  C )  -> 
( A  ^m  C
)  ~~  ( x  ^m  C ) )
117, 9, 10syl2anr 288 . . 3  |-  ( ( ( A  ~<_  B  /\  C  e.  V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  ( A  ^m  C )  ~~  (
x  ^m  C )
)
122ad2antrr 480 . . . . 5  |-  ( ( ( A  ~<_  B  /\  C  e.  V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  B  e.  _V )
13 simprr 522 . . . . 5  |-  ( ( ( A  ~<_  B  /\  C  e.  V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  x  C_  B
)
14 mapss 6657 . . . . 5  |-  ( ( B  e.  _V  /\  x  C_  B )  -> 
( x  ^m  C
)  C_  ( B  ^m  C ) )
1512, 13, 14syl2anc 409 . . . 4  |-  ( ( ( A  ~<_  B  /\  C  e.  V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  ( x  ^m  C )  C_  ( B  ^m  C ) )
16 fnmap 6621 . . . . . . 7  |-  ^m  Fn  ( _V  X.  _V )
17 elex 2737 . . . . . . 7  |-  ( C  e.  V  ->  C  e.  _V )
18 fnovex 5875 . . . . . . 7  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  B  e.  _V  /\  C  e. 
_V )  ->  ( B  ^m  C )  e. 
_V )
1916, 2, 17, 18mp3an3an 1333 . . . . . 6  |-  ( ( A  ~<_  B  /\  C  e.  V )  ->  ( B  ^m  C )  e. 
_V )
20 ssdomg 6744 . . . . . 6  |-  ( ( B  ^m  C )  e.  _V  ->  (
( x  ^m  C
)  C_  ( B  ^m  C )  ->  (
x  ^m  C )  ~<_  ( B  ^m  C ) ) )
2119, 20syl 14 . . . . 5  |-  ( ( A  ~<_  B  /\  C  e.  V )  ->  (
( x  ^m  C
)  C_  ( B  ^m  C )  ->  (
x  ^m  C )  ~<_  ( B  ^m  C ) ) )
2221adantr 274 . . . 4  |-  ( ( ( A  ~<_  B  /\  C  e.  V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  ( (
x  ^m  C )  C_  ( B  ^m  C
)  ->  ( x  ^m  C )  ~<_  ( B  ^m  C ) ) )
2315, 22mpd 13 . . 3  |-  ( ( ( A  ~<_  B  /\  C  e.  V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  ( x  ^m  C )  ~<_  ( B  ^m  C ) )
24 endomtr 6756 . . 3  |-  ( ( ( A  ^m  C
)  ~~  ( x  ^m  C )  /\  (
x  ^m  C )  ~<_  ( B  ^m  C ) )  ->  ( A  ^m  C )  ~<_  ( B  ^m  C ) )
2511, 23, 24syl2anc 409 . 2  |-  ( ( ( A  ~<_  B  /\  C  e.  V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  ( A  ^m  C )  ~<_  ( B  ^m  C ) )
266, 25exlimddv 1886 1  |-  ( ( A  ~<_  B  /\  C  e.  V )  ->  ( A  ^m  C )  ~<_  ( B  ^m  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   E.wex 1480    e. wcel 2136   _Vcvv 2726    C_ wss 3116   class class class wbr 3982    X. cxp 4602    Fn wfn 5183  (class class class)co 5842    ^m cmap 6614    ~~ cen 6704    ~<_ cdom 6705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-en 6707  df-dom 6708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator