Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mapdom1g | Unicode version |
Description: Order-preserving property of set exponentiation. (Contributed by Jim Kingdon, 15-Jul-2022.) |
Ref | Expression |
---|---|
mapdom1g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 6711 | . . . . . 6 | |
2 | 1 | brrelex2i 4648 | . . . . 5 |
3 | domeng 6718 | . . . . 5 | |
4 | 2, 3 | syl 14 | . . . 4 |
5 | 4 | ibi 175 | . . 3 |
6 | 5 | adantr 274 | . 2 |
7 | simpl 108 | . . . 4 | |
8 | enrefg 6730 | . . . . 5 | |
9 | 8 | adantl 275 | . . . 4 |
10 | mapen 6812 | . . . 4 | |
11 | 7, 9, 10 | syl2anr 288 | . . 3 |
12 | 2 | ad2antrr 480 | . . . . 5 |
13 | simprr 522 | . . . . 5 | |
14 | mapss 6657 | . . . . 5 | |
15 | 12, 13, 14 | syl2anc 409 | . . . 4 |
16 | fnmap 6621 | . . . . . . 7 | |
17 | elex 2737 | . . . . . . 7 | |
18 | fnovex 5875 | . . . . . . 7 | |
19 | 16, 2, 17, 18 | mp3an3an 1333 | . . . . . 6 |
20 | ssdomg 6744 | . . . . . 6 | |
21 | 19, 20 | syl 14 | . . . . 5 |
22 | 21 | adantr 274 | . . . 4 |
23 | 15, 22 | mpd 13 | . . 3 |
24 | endomtr 6756 | . . 3 | |
25 | 11, 23, 24 | syl2anc 409 | . 2 |
26 | 6, 25 | exlimddv 1886 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wex 1480 wcel 2136 cvv 2726 wss 3116 class class class wbr 3982 cxp 4602 wfn 5183 (class class class)co 5842 cmap 6614 cen 6704 cdom 6705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-en 6707 df-dom 6708 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |