ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapdom1g Unicode version

Theorem mapdom1g 6944
Description: Order-preserving property of set exponentiation. (Contributed by Jim Kingdon, 15-Jul-2022.)
Assertion
Ref Expression
mapdom1g  |-  ( ( A  ~<_  B  /\  C  e.  V )  ->  ( A  ^m  C )  ~<_  ( B  ^m  C ) )

Proof of Theorem mapdom1g
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 reldom 6832 . . . . . 6  |-  Rel  ~<_
21brrelex2i 4719 . . . . 5  |-  ( A  ~<_  B  ->  B  e.  _V )
3 domeng 6841 . . . . 5  |-  ( B  e.  _V  ->  ( A  ~<_  B  <->  E. x
( A  ~~  x  /\  x  C_  B ) ) )
42, 3syl 14 . . . 4  |-  ( A  ~<_  B  ->  ( A  ~<_  B 
<->  E. x ( A 
~~  x  /\  x  C_  B ) ) )
54ibi 176 . . 3  |-  ( A  ~<_  B  ->  E. x
( A  ~~  x  /\  x  C_  B ) )
65adantr 276 . 2  |-  ( ( A  ~<_  B  /\  C  e.  V )  ->  E. x
( A  ~~  x  /\  x  C_  B ) )
7 simpl 109 . . . 4  |-  ( ( A  ~~  x  /\  x  C_  B )  ->  A  ~~  x )
8 enrefg 6855 . . . . 5  |-  ( C  e.  V  ->  C  ~~  C )
98adantl 277 . . . 4  |-  ( ( A  ~<_  B  /\  C  e.  V )  ->  C  ~~  C )
10 mapen 6943 . . . 4  |-  ( ( A  ~~  x  /\  C  ~~  C )  -> 
( A  ^m  C
)  ~~  ( x  ^m  C ) )
117, 9, 10syl2anr 290 . . 3  |-  ( ( ( A  ~<_  B  /\  C  e.  V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  ( A  ^m  C )  ~~  (
x  ^m  C )
)
122ad2antrr 488 . . . . 5  |-  ( ( ( A  ~<_  B  /\  C  e.  V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  B  e.  _V )
13 simprr 531 . . . . 5  |-  ( ( ( A  ~<_  B  /\  C  e.  V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  x  C_  B
)
14 mapss 6778 . . . . 5  |-  ( ( B  e.  _V  /\  x  C_  B )  -> 
( x  ^m  C
)  C_  ( B  ^m  C ) )
1512, 13, 14syl2anc 411 . . . 4  |-  ( ( ( A  ~<_  B  /\  C  e.  V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  ( x  ^m  C )  C_  ( B  ^m  C ) )
16 fnmap 6742 . . . . . . 7  |-  ^m  Fn  ( _V  X.  _V )
17 elex 2783 . . . . . . 7  |-  ( C  e.  V  ->  C  e.  _V )
18 fnovex 5977 . . . . . . 7  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  B  e.  _V  /\  C  e. 
_V )  ->  ( B  ^m  C )  e. 
_V )
1916, 2, 17, 18mp3an3an 1356 . . . . . 6  |-  ( ( A  ~<_  B  /\  C  e.  V )  ->  ( B  ^m  C )  e. 
_V )
20 ssdomg 6870 . . . . . 6  |-  ( ( B  ^m  C )  e.  _V  ->  (
( x  ^m  C
)  C_  ( B  ^m  C )  ->  (
x  ^m  C )  ~<_  ( B  ^m  C ) ) )
2119, 20syl 14 . . . . 5  |-  ( ( A  ~<_  B  /\  C  e.  V )  ->  (
( x  ^m  C
)  C_  ( B  ^m  C )  ->  (
x  ^m  C )  ~<_  ( B  ^m  C ) ) )
2221adantr 276 . . . 4  |-  ( ( ( A  ~<_  B  /\  C  e.  V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  ( (
x  ^m  C )  C_  ( B  ^m  C
)  ->  ( x  ^m  C )  ~<_  ( B  ^m  C ) ) )
2315, 22mpd 13 . . 3  |-  ( ( ( A  ~<_  B  /\  C  e.  V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  ( x  ^m  C )  ~<_  ( B  ^m  C ) )
24 endomtr 6882 . . 3  |-  ( ( ( A  ^m  C
)  ~~  ( x  ^m  C )  /\  (
x  ^m  C )  ~<_  ( B  ^m  C ) )  ->  ( A  ^m  C )  ~<_  ( B  ^m  C ) )
2511, 23, 24syl2anc 411 . 2  |-  ( ( ( A  ~<_  B  /\  C  e.  V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  ( A  ^m  C )  ~<_  ( B  ^m  C ) )
266, 25exlimddv 1922 1  |-  ( ( A  ~<_  B  /\  C  e.  V )  ->  ( A  ^m  C )  ~<_  ( B  ^m  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1515    e. wcel 2176   _Vcvv 2772    C_ wss 3166   class class class wbr 4044    X. cxp 4673    Fn wfn 5266  (class class class)co 5944    ^m cmap 6735    ~~ cen 6825    ~<_ cdom 6826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-map 6737  df-en 6828  df-dom 6829
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator