Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mapdom1g | Unicode version |
Description: Order-preserving property of set exponentiation. (Contributed by Jim Kingdon, 15-Jul-2022.) |
Ref | Expression |
---|---|
mapdom1g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 6723 | . . . . . 6 | |
2 | 1 | brrelex2i 4655 | . . . . 5 |
3 | domeng 6730 | . . . . 5 | |
4 | 2, 3 | syl 14 | . . . 4 |
5 | 4 | ibi 175 | . . 3 |
6 | 5 | adantr 274 | . 2 |
7 | simpl 108 | . . . 4 | |
8 | enrefg 6742 | . . . . 5 | |
9 | 8 | adantl 275 | . . . 4 |
10 | mapen 6824 | . . . 4 | |
11 | 7, 9, 10 | syl2anr 288 | . . 3 |
12 | 2 | ad2antrr 485 | . . . . 5 |
13 | simprr 527 | . . . . 5 | |
14 | mapss 6669 | . . . . 5 | |
15 | 12, 13, 14 | syl2anc 409 | . . . 4 |
16 | fnmap 6633 | . . . . . . 7 | |
17 | elex 2741 | . . . . . . 7 | |
18 | fnovex 5886 | . . . . . . 7 | |
19 | 16, 2, 17, 18 | mp3an3an 1338 | . . . . . 6 |
20 | ssdomg 6756 | . . . . . 6 | |
21 | 19, 20 | syl 14 | . . . . 5 |
22 | 21 | adantr 274 | . . . 4 |
23 | 15, 22 | mpd 13 | . . 3 |
24 | endomtr 6768 | . . 3 | |
25 | 11, 23, 24 | syl2anc 409 | . 2 |
26 | 6, 25 | exlimddv 1891 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wex 1485 wcel 2141 cvv 2730 wss 3121 class class class wbr 3989 cxp 4609 wfn 5193 (class class class)co 5853 cmap 6626 cen 6716 cdom 6717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-map 6628 df-en 6719 df-dom 6720 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |