ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapdom1g Unicode version

Theorem mapdom1g 7008
Description: Order-preserving property of set exponentiation. (Contributed by Jim Kingdon, 15-Jul-2022.)
Assertion
Ref Expression
mapdom1g  |-  ( ( A  ~<_  B  /\  C  e.  V )  ->  ( A  ^m  C )  ~<_  ( B  ^m  C ) )

Proof of Theorem mapdom1g
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 reldom 6892 . . . . . 6  |-  Rel  ~<_
21brrelex2i 4763 . . . . 5  |-  ( A  ~<_  B  ->  B  e.  _V )
3 domeng 6901 . . . . 5  |-  ( B  e.  _V  ->  ( A  ~<_  B  <->  E. x
( A  ~~  x  /\  x  C_  B ) ) )
42, 3syl 14 . . . 4  |-  ( A  ~<_  B  ->  ( A  ~<_  B 
<->  E. x ( A 
~~  x  /\  x  C_  B ) ) )
54ibi 176 . . 3  |-  ( A  ~<_  B  ->  E. x
( A  ~~  x  /\  x  C_  B ) )
65adantr 276 . 2  |-  ( ( A  ~<_  B  /\  C  e.  V )  ->  E. x
( A  ~~  x  /\  x  C_  B ) )
7 simpl 109 . . . 4  |-  ( ( A  ~~  x  /\  x  C_  B )  ->  A  ~~  x )
8 enrefg 6915 . . . . 5  |-  ( C  e.  V  ->  C  ~~  C )
98adantl 277 . . . 4  |-  ( ( A  ~<_  B  /\  C  e.  V )  ->  C  ~~  C )
10 mapen 7007 . . . 4  |-  ( ( A  ~~  x  /\  C  ~~  C )  -> 
( A  ^m  C
)  ~~  ( x  ^m  C ) )
117, 9, 10syl2anr 290 . . 3  |-  ( ( ( A  ~<_  B  /\  C  e.  V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  ( A  ^m  C )  ~~  (
x  ^m  C )
)
122ad2antrr 488 . . . . 5  |-  ( ( ( A  ~<_  B  /\  C  e.  V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  B  e.  _V )
13 simprr 531 . . . . 5  |-  ( ( ( A  ~<_  B  /\  C  e.  V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  x  C_  B
)
14 mapss 6838 . . . . 5  |-  ( ( B  e.  _V  /\  x  C_  B )  -> 
( x  ^m  C
)  C_  ( B  ^m  C ) )
1512, 13, 14syl2anc 411 . . . 4  |-  ( ( ( A  ~<_  B  /\  C  e.  V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  ( x  ^m  C )  C_  ( B  ^m  C ) )
16 fnmap 6802 . . . . . . 7  |-  ^m  Fn  ( _V  X.  _V )
17 elex 2811 . . . . . . 7  |-  ( C  e.  V  ->  C  e.  _V )
18 fnovex 6034 . . . . . . 7  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  B  e.  _V  /\  C  e. 
_V )  ->  ( B  ^m  C )  e. 
_V )
1916, 2, 17, 18mp3an3an 1377 . . . . . 6  |-  ( ( A  ~<_  B  /\  C  e.  V )  ->  ( B  ^m  C )  e. 
_V )
20 ssdomg 6930 . . . . . 6  |-  ( ( B  ^m  C )  e.  _V  ->  (
( x  ^m  C
)  C_  ( B  ^m  C )  ->  (
x  ^m  C )  ~<_  ( B  ^m  C ) ) )
2119, 20syl 14 . . . . 5  |-  ( ( A  ~<_  B  /\  C  e.  V )  ->  (
( x  ^m  C
)  C_  ( B  ^m  C )  ->  (
x  ^m  C )  ~<_  ( B  ^m  C ) ) )
2221adantr 276 . . . 4  |-  ( ( ( A  ~<_  B  /\  C  e.  V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  ( (
x  ^m  C )  C_  ( B  ^m  C
)  ->  ( x  ^m  C )  ~<_  ( B  ^m  C ) ) )
2315, 22mpd 13 . . 3  |-  ( ( ( A  ~<_  B  /\  C  e.  V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  ( x  ^m  C )  ~<_  ( B  ^m  C ) )
24 endomtr 6942 . . 3  |-  ( ( ( A  ^m  C
)  ~~  ( x  ^m  C )  /\  (
x  ^m  C )  ~<_  ( B  ^m  C ) )  ->  ( A  ^m  C )  ~<_  ( B  ^m  C ) )
2511, 23, 24syl2anc 411 . 2  |-  ( ( ( A  ~<_  B  /\  C  e.  V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  ( A  ^m  C )  ~<_  ( B  ^m  C ) )
266, 25exlimddv 1945 1  |-  ( ( A  ~<_  B  /\  C  e.  V )  ->  ( A  ^m  C )  ~<_  ( B  ^m  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1538    e. wcel 2200   _Vcvv 2799    C_ wss 3197   class class class wbr 4083    X. cxp 4717    Fn wfn 5313  (class class class)co 6001    ^m cmap 6795    ~~ cen 6885    ~<_ cdom 6886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-en 6888  df-dom 6889
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator