ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapdom1g Unicode version

Theorem mapdom1g 6825
Description: Order-preserving property of set exponentiation. (Contributed by Jim Kingdon, 15-Jul-2022.)
Assertion
Ref Expression
mapdom1g  |-  ( ( A  ~<_  B  /\  C  e.  V )  ->  ( A  ^m  C )  ~<_  ( B  ^m  C ) )

Proof of Theorem mapdom1g
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 reldom 6723 . . . . . 6  |-  Rel  ~<_
21brrelex2i 4655 . . . . 5  |-  ( A  ~<_  B  ->  B  e.  _V )
3 domeng 6730 . . . . 5  |-  ( B  e.  _V  ->  ( A  ~<_  B  <->  E. x
( A  ~~  x  /\  x  C_  B ) ) )
42, 3syl 14 . . . 4  |-  ( A  ~<_  B  ->  ( A  ~<_  B 
<->  E. x ( A 
~~  x  /\  x  C_  B ) ) )
54ibi 175 . . 3  |-  ( A  ~<_  B  ->  E. x
( A  ~~  x  /\  x  C_  B ) )
65adantr 274 . 2  |-  ( ( A  ~<_  B  /\  C  e.  V )  ->  E. x
( A  ~~  x  /\  x  C_  B ) )
7 simpl 108 . . . 4  |-  ( ( A  ~~  x  /\  x  C_  B )  ->  A  ~~  x )
8 enrefg 6742 . . . . 5  |-  ( C  e.  V  ->  C  ~~  C )
98adantl 275 . . . 4  |-  ( ( A  ~<_  B  /\  C  e.  V )  ->  C  ~~  C )
10 mapen 6824 . . . 4  |-  ( ( A  ~~  x  /\  C  ~~  C )  -> 
( A  ^m  C
)  ~~  ( x  ^m  C ) )
117, 9, 10syl2anr 288 . . 3  |-  ( ( ( A  ~<_  B  /\  C  e.  V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  ( A  ^m  C )  ~~  (
x  ^m  C )
)
122ad2antrr 485 . . . . 5  |-  ( ( ( A  ~<_  B  /\  C  e.  V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  B  e.  _V )
13 simprr 527 . . . . 5  |-  ( ( ( A  ~<_  B  /\  C  e.  V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  x  C_  B
)
14 mapss 6669 . . . . 5  |-  ( ( B  e.  _V  /\  x  C_  B )  -> 
( x  ^m  C
)  C_  ( B  ^m  C ) )
1512, 13, 14syl2anc 409 . . . 4  |-  ( ( ( A  ~<_  B  /\  C  e.  V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  ( x  ^m  C )  C_  ( B  ^m  C ) )
16 fnmap 6633 . . . . . . 7  |-  ^m  Fn  ( _V  X.  _V )
17 elex 2741 . . . . . . 7  |-  ( C  e.  V  ->  C  e.  _V )
18 fnovex 5886 . . . . . . 7  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  B  e.  _V  /\  C  e. 
_V )  ->  ( B  ^m  C )  e. 
_V )
1916, 2, 17, 18mp3an3an 1338 . . . . . 6  |-  ( ( A  ~<_  B  /\  C  e.  V )  ->  ( B  ^m  C )  e. 
_V )
20 ssdomg 6756 . . . . . 6  |-  ( ( B  ^m  C )  e.  _V  ->  (
( x  ^m  C
)  C_  ( B  ^m  C )  ->  (
x  ^m  C )  ~<_  ( B  ^m  C ) ) )
2119, 20syl 14 . . . . 5  |-  ( ( A  ~<_  B  /\  C  e.  V )  ->  (
( x  ^m  C
)  C_  ( B  ^m  C )  ->  (
x  ^m  C )  ~<_  ( B  ^m  C ) ) )
2221adantr 274 . . . 4  |-  ( ( ( A  ~<_  B  /\  C  e.  V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  ( (
x  ^m  C )  C_  ( B  ^m  C
)  ->  ( x  ^m  C )  ~<_  ( B  ^m  C ) ) )
2315, 22mpd 13 . . 3  |-  ( ( ( A  ~<_  B  /\  C  e.  V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  ( x  ^m  C )  ~<_  ( B  ^m  C ) )
24 endomtr 6768 . . 3  |-  ( ( ( A  ^m  C
)  ~~  ( x  ^m  C )  /\  (
x  ^m  C )  ~<_  ( B  ^m  C ) )  ->  ( A  ^m  C )  ~<_  ( B  ^m  C ) )
2511, 23, 24syl2anc 409 . 2  |-  ( ( ( A  ~<_  B  /\  C  e.  V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  ( A  ^m  C )  ~<_  ( B  ^m  C ) )
266, 25exlimddv 1891 1  |-  ( ( A  ~<_  B  /\  C  e.  V )  ->  ( A  ^m  C )  ~<_  ( B  ^m  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   E.wex 1485    e. wcel 2141   _Vcvv 2730    C_ wss 3121   class class class wbr 3989    X. cxp 4609    Fn wfn 5193  (class class class)co 5853    ^m cmap 6626    ~~ cen 6716    ~<_ cdom 6717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-en 6719  df-dom 6720
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator