ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domen Unicode version

Theorem domen 6729
Description: Dominance in terms of equinumerosity. Example 1 of [Enderton] p. 146. (Contributed by NM, 15-Jun-1998.)
Hypothesis
Ref Expression
bren.1  |-  B  e. 
_V
Assertion
Ref Expression
domen  |-  ( A  ~<_  B  <->  E. x ( A 
~~  x  /\  x  C_  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem domen
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 bren.1 . . 3  |-  B  e. 
_V
21brdom 6728 . 2  |-  ( A  ~<_  B  <->  E. f  f : A -1-1-> B )
3 vex 2733 . . . . . 6  |-  f  e. 
_V
43f11o 5475 . . . . 5  |-  ( f : A -1-1-> B  <->  E. x
( f : A -1-1-onto-> x  /\  x  C_  B ) )
54exbii 1598 . . . 4  |-  ( E. f  f : A -1-1-> B  <->  E. f E. x ( f : A -1-1-onto-> x  /\  x  C_  B ) )
6 excom 1657 . . . 4  |-  ( E. f E. x ( f : A -1-1-onto-> x  /\  x  C_  B )  <->  E. x E. f ( f : A -1-1-onto-> x  /\  x  C_  B ) )
75, 6bitri 183 . . 3  |-  ( E. f  f : A -1-1-> B  <->  E. x E. f ( f : A -1-1-onto-> x  /\  x  C_  B ) )
8 bren 6725 . . . . . 6  |-  ( A 
~~  x  <->  E. f 
f : A -1-1-onto-> x )
98anbi1i 455 . . . . 5  |-  ( ( A  ~~  x  /\  x  C_  B )  <->  ( E. f  f : A -1-1-onto-> x  /\  x  C_  B ) )
10 19.41v 1895 . . . . 5  |-  ( E. f ( f : A -1-1-onto-> x  /\  x  C_  B )  <->  ( E. f  f : A -1-1-onto-> x  /\  x  C_  B ) )
119, 10bitr4i 186 . . . 4  |-  ( ( A  ~~  x  /\  x  C_  B )  <->  E. f
( f : A -1-1-onto-> x  /\  x  C_  B ) )
1211exbii 1598 . . 3  |-  ( E. x ( A  ~~  x  /\  x  C_  B
)  <->  E. x E. f
( f : A -1-1-onto-> x  /\  x  C_  B ) )
137, 12bitr4i 186 . 2  |-  ( E. f  f : A -1-1-> B  <->  E. x ( A  ~~  x  /\  x  C_  B
) )
142, 13bitri 183 1  |-  ( A  ~<_  B  <->  E. x ( A 
~~  x  /\  x  C_  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   E.wex 1485    e. wcel 2141   _Vcvv 2730    C_ wss 3121   class class class wbr 3989   -1-1->wf1 5195   -1-1-onto->wf1o 5197    ~~ cen 6716    ~<_ cdom 6717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-dm 4621  df-rn 4622  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-en 6719  df-dom 6720
This theorem is referenced by:  domeng  6730  php5dom  6841
  Copyright terms: Public domain W3C validator