Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > domen | Unicode version |
Description: Dominance in terms of equinumerosity. Example 1 of [Enderton] p. 146. (Contributed by NM, 15-Jun-1998.) |
Ref | Expression |
---|---|
bren.1 |
Ref | Expression |
---|---|
domen |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren.1 | . . 3 | |
2 | 1 | brdom 6716 | . 2 |
3 | vex 2729 | . . . . . 6 | |
4 | 3 | f11o 5465 | . . . . 5 |
5 | 4 | exbii 1593 | . . . 4 |
6 | excom 1652 | . . . 4 | |
7 | 5, 6 | bitri 183 | . . 3 |
8 | bren 6713 | . . . . . 6 | |
9 | 8 | anbi1i 454 | . . . . 5 |
10 | 19.41v 1890 | . . . . 5 | |
11 | 9, 10 | bitr4i 186 | . . . 4 |
12 | 11 | exbii 1593 | . . 3 |
13 | 7, 12 | bitr4i 186 | . 2 |
14 | 2, 13 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wex 1480 wcel 2136 cvv 2726 wss 3116 class class class wbr 3982 wf1 5185 wf1o 5187 cen 6704 cdom 6705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-dm 4614 df-rn 4615 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-en 6707 df-dom 6708 |
This theorem is referenced by: domeng 6718 php5dom 6829 |
Copyright terms: Public domain | W3C validator |