ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domen Unicode version

Theorem domen 6645
Description: Dominance in terms of equinumerosity. Example 1 of [Enderton] p. 146. (Contributed by NM, 15-Jun-1998.)
Hypothesis
Ref Expression
bren.1  |-  B  e. 
_V
Assertion
Ref Expression
domen  |-  ( A  ~<_  B  <->  E. x ( A 
~~  x  /\  x  C_  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem domen
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 bren.1 . . 3  |-  B  e. 
_V
21brdom 6644 . 2  |-  ( A  ~<_  B  <->  E. f  f : A -1-1-> B )
3 vex 2689 . . . . . 6  |-  f  e. 
_V
43f11o 5400 . . . . 5  |-  ( f : A -1-1-> B  <->  E. x
( f : A -1-1-onto-> x  /\  x  C_  B ) )
54exbii 1584 . . . 4  |-  ( E. f  f : A -1-1-> B  <->  E. f E. x ( f : A -1-1-onto-> x  /\  x  C_  B ) )
6 excom 1642 . . . 4  |-  ( E. f E. x ( f : A -1-1-onto-> x  /\  x  C_  B )  <->  E. x E. f ( f : A -1-1-onto-> x  /\  x  C_  B ) )
75, 6bitri 183 . . 3  |-  ( E. f  f : A -1-1-> B  <->  E. x E. f ( f : A -1-1-onto-> x  /\  x  C_  B ) )
8 bren 6641 . . . . . 6  |-  ( A 
~~  x  <->  E. f 
f : A -1-1-onto-> x )
98anbi1i 453 . . . . 5  |-  ( ( A  ~~  x  /\  x  C_  B )  <->  ( E. f  f : A -1-1-onto-> x  /\  x  C_  B ) )
10 19.41v 1874 . . . . 5  |-  ( E. f ( f : A -1-1-onto-> x  /\  x  C_  B )  <->  ( E. f  f : A -1-1-onto-> x  /\  x  C_  B ) )
119, 10bitr4i 186 . . . 4  |-  ( ( A  ~~  x  /\  x  C_  B )  <->  E. f
( f : A -1-1-onto-> x  /\  x  C_  B ) )
1211exbii 1584 . . 3  |-  ( E. x ( A  ~~  x  /\  x  C_  B
)  <->  E. x E. f
( f : A -1-1-onto-> x  /\  x  C_  B ) )
137, 12bitr4i 186 . 2  |-  ( E. f  f : A -1-1-> B  <->  E. x ( A  ~~  x  /\  x  C_  B
) )
142, 13bitri 183 1  |-  ( A  ~<_  B  <->  E. x ( A 
~~  x  /\  x  C_  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   E.wex 1468    e. wcel 1480   _Vcvv 2686    C_ wss 3071   class class class wbr 3929   -1-1->wf1 5120   -1-1-onto->wf1o 5122    ~~ cen 6632    ~<_ cdom 6633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-xp 4545  df-rel 4546  df-cnv 4547  df-dm 4549  df-rn 4550  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-en 6635  df-dom 6636
This theorem is referenced by:  domeng  6646  php5dom  6757
  Copyright terms: Public domain W3C validator