ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  domen Unicode version

Theorem domen 6840
Description: Dominance in terms of equinumerosity. Example 1 of [Enderton] p. 146. (Contributed by NM, 15-Jun-1998.)
Hypothesis
Ref Expression
bren.1  |-  B  e. 
_V
Assertion
Ref Expression
domen  |-  ( A  ~<_  B  <->  E. x ( A 
~~  x  /\  x  C_  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem domen
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 bren.1 . . 3  |-  B  e. 
_V
21brdom 6839 . 2  |-  ( A  ~<_  B  <->  E. f  f : A -1-1-> B )
3 vex 2775 . . . . . 6  |-  f  e. 
_V
43f11o 5555 . . . . 5  |-  ( f : A -1-1-> B  <->  E. x
( f : A -1-1-onto-> x  /\  x  C_  B ) )
54exbii 1628 . . . 4  |-  ( E. f  f : A -1-1-> B  <->  E. f E. x ( f : A -1-1-onto-> x  /\  x  C_  B ) )
6 excom 1687 . . . 4  |-  ( E. f E. x ( f : A -1-1-onto-> x  /\  x  C_  B )  <->  E. x E. f ( f : A -1-1-onto-> x  /\  x  C_  B ) )
75, 6bitri 184 . . 3  |-  ( E. f  f : A -1-1-> B  <->  E. x E. f ( f : A -1-1-onto-> x  /\  x  C_  B ) )
8 bren 6835 . . . . . 6  |-  ( A 
~~  x  <->  E. f 
f : A -1-1-onto-> x )
98anbi1i 458 . . . . 5  |-  ( ( A  ~~  x  /\  x  C_  B )  <->  ( E. f  f : A -1-1-onto-> x  /\  x  C_  B ) )
10 19.41v 1926 . . . . 5  |-  ( E. f ( f : A -1-1-onto-> x  /\  x  C_  B )  <->  ( E. f  f : A -1-1-onto-> x  /\  x  C_  B ) )
119, 10bitr4i 187 . . . 4  |-  ( ( A  ~~  x  /\  x  C_  B )  <->  E. f
( f : A -1-1-onto-> x  /\  x  C_  B ) )
1211exbii 1628 . . 3  |-  ( E. x ( A  ~~  x  /\  x  C_  B
)  <->  E. x E. f
( f : A -1-1-onto-> x  /\  x  C_  B ) )
137, 12bitr4i 187 . 2  |-  ( E. f  f : A -1-1-> B  <->  E. x ( A  ~~  x  /\  x  C_  B
) )
142, 13bitri 184 1  |-  ( A  ~<_  B  <->  E. x ( A 
~~  x  /\  x  C_  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1515    e. wcel 2176   _Vcvv 2772    C_ wss 3166   class class class wbr 4044   -1-1->wf1 5268   -1-1-onto->wf1o 5270    ~~ cen 6825    ~<_ cdom 6826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-xp 4681  df-rel 4682  df-cnv 4683  df-dm 4685  df-rn 4686  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-en 6828  df-dom 6829
This theorem is referenced by:  domeng  6841  php5dom  6960
  Copyright terms: Public domain W3C validator