![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ecelqsdm | GIF version |
Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 30-Jul-1995.) |
Ref | Expression |
---|---|
ecelqsdm | ⊢ ((dom 𝑅 = 𝐴 ∧ [𝐵]𝑅 ∈ (𝐴 / 𝑅)) → 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elqsn0m 6659 | . . 3 ⊢ ((dom 𝑅 = 𝐴 ∧ [𝐵]𝑅 ∈ (𝐴 / 𝑅)) → ∃𝑥 𝑥 ∈ [𝐵]𝑅) | |
2 | ecdmn0m 6633 | . . 3 ⊢ (𝐵 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐵]𝑅) | |
3 | 1, 2 | sylibr 134 | . 2 ⊢ ((dom 𝑅 = 𝐴 ∧ [𝐵]𝑅 ∈ (𝐴 / 𝑅)) → 𝐵 ∈ dom 𝑅) |
4 | simpl 109 | . 2 ⊢ ((dom 𝑅 = 𝐴 ∧ [𝐵]𝑅 ∈ (𝐴 / 𝑅)) → dom 𝑅 = 𝐴) | |
5 | 3, 4 | eleqtrd 2272 | 1 ⊢ ((dom 𝑅 = 𝐴 ∧ [𝐵]𝑅 ∈ (𝐴 / 𝑅)) → 𝐵 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2164 dom cdm 4660 [cec 6587 / cqs 6588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-ec 6591 df-qs 6595 |
This theorem is referenced by: th3qlem1 6693 nnnq0lem1 7508 prsrlem1 7804 gt0srpr 7810 |
Copyright terms: Public domain | W3C validator |