| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecelqsdm | GIF version | ||
| Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 30-Jul-1995.) |
| Ref | Expression |
|---|---|
| ecelqsdm | ⊢ ((dom 𝑅 = 𝐴 ∧ [𝐵]𝑅 ∈ (𝐴 / 𝑅)) → 𝐵 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqsn0m 6708 | . . 3 ⊢ ((dom 𝑅 = 𝐴 ∧ [𝐵]𝑅 ∈ (𝐴 / 𝑅)) → ∃𝑥 𝑥 ∈ [𝐵]𝑅) | |
| 2 | ecdmn0m 6682 | . . 3 ⊢ (𝐵 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐵]𝑅) | |
| 3 | 1, 2 | sylibr 134 | . 2 ⊢ ((dom 𝑅 = 𝐴 ∧ [𝐵]𝑅 ∈ (𝐴 / 𝑅)) → 𝐵 ∈ dom 𝑅) |
| 4 | simpl 109 | . 2 ⊢ ((dom 𝑅 = 𝐴 ∧ [𝐵]𝑅 ∈ (𝐴 / 𝑅)) → dom 𝑅 = 𝐴) | |
| 5 | 3, 4 | eleqtrd 2285 | 1 ⊢ ((dom 𝑅 = 𝐴 ∧ [𝐵]𝑅 ∈ (𝐴 / 𝑅)) → 𝐵 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∃wex 1516 ∈ wcel 2177 dom cdm 4688 [cec 6636 / cqs 6637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4055 df-opab 4117 df-xp 4694 df-cnv 4696 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-ec 6640 df-qs 6644 |
| This theorem is referenced by: th3qlem1 6742 nnnq0lem1 7589 prsrlem1 7885 gt0srpr 7891 |
| Copyright terms: Public domain | W3C validator |