ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftdm Unicode version

Theorem shftdm 11333
Description: Domain of a relation shifted by  A. The set on the right is more commonly notated as  ( dom  F  +  A ) (meaning add  A to every element of  dom  F). (Contributed by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
shftdm  |-  ( A  e.  CC  ->  dom  ( F  shift  A )  =  { x  e.  CC  |  ( x  -  A )  e. 
dom  F } )
Distinct variable groups:    x, A    x, F

Proof of Theorem shftdm
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 shftfval.1 . . . 4  |-  F  e. 
_V
21shftfval 11332 . . 3  |-  ( A  e.  CC  ->  ( F  shift  A )  =  { <. x ,  y
>.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) } )
32dmeqd 4925 . 2  |-  ( A  e.  CC  ->  dom  ( F  shift  A )  =  dom  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A
) F y ) } )
4 19.42v 1953 . . . . 5  |-  ( E. y ( x  e.  CC  /\  ( x  -  A ) F y )  <->  ( x  e.  CC  /\  E. y
( x  -  A
) F y ) )
5 simpr 110 . . . . . . . 8  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  x  e.  CC )
6 simpl 109 . . . . . . . 8  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  A  e.  CC )
75, 6subcld 8457 . . . . . . 7  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( x  -  A
)  e.  CC )
8 eldmg 4918 . . . . . . 7  |-  ( ( x  -  A )  e.  CC  ->  (
( x  -  A
)  e.  dom  F  <->  E. y ( x  -  A ) F y ) )
97, 8syl 14 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( ( x  -  A )  e.  dom  F  <->  E. y ( x  -  A ) F y ) )
109pm5.32da 452 . . . . 5  |-  ( A  e.  CC  ->  (
( x  e.  CC  /\  ( x  -  A
)  e.  dom  F
)  <->  ( x  e.  CC  /\  E. y
( x  -  A
) F y ) ) )
114, 10bitr4id 199 . . . 4  |-  ( A  e.  CC  ->  ( E. y ( x  e.  CC  /\  ( x  -  A ) F y )  <->  ( x  e.  CC  /\  ( x  -  A )  e. 
dom  F ) ) )
1211abbidv 2347 . . 3  |-  ( A  e.  CC  ->  { x  |  E. y ( x  e.  CC  /\  (
x  -  A ) F y ) }  =  { x  |  ( x  e.  CC  /\  ( x  -  A
)  e.  dom  F
) } )
13 dmopab 4934 . . 3  |-  dom  { <. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }  =  { x  |  E. y ( x  e.  CC  /\  ( x  -  A ) F y ) }
14 df-rab 2517 . . 3  |-  { x  e.  CC  |  ( x  -  A )  e. 
dom  F }  =  { x  |  (
x  e.  CC  /\  ( x  -  A
)  e.  dom  F
) }
1512, 13, 143eqtr4g 2287 . 2  |-  ( A  e.  CC  ->  dom  {
<. x ,  y >.  |  ( x  e.  CC  /\  ( x  -  A ) F y ) }  =  { x  e.  CC  |  ( x  -  A )  e.  dom  F } )
163, 15eqtrd 2262 1  |-  ( A  e.  CC  ->  dom  ( F  shift  A )  =  { x  e.  CC  |  ( x  -  A )  e. 
dom  F } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   E.wex 1538    e. wcel 2200   {cab 2215   {crab 2512   _Vcvv 2799   class class class wbr 4083   {copab 4144   dom cdm 4719  (class class class)co 6001   CCcc 7997    - cmin 8317    shift cshi 11325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-resscn 8091  ax-1cn 8092  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-sub 8319  df-shft 11326
This theorem is referenced by:  shftfn  11335
  Copyright terms: Public domain W3C validator