| Step | Hyp | Ref
| Expression |
| 1 | | conjnmz.1 |
. . . . 5
          |
| 2 | 1 | ssrab3 3270 |
. . . 4
 |
| 3 | | simpr 110 |
. . . 4
  SubGrp     |
| 4 | 2, 3 | sselid 3182 |
. . 3
  SubGrp     |
| 5 | | conjghm.x |
. . . 4
     |
| 6 | | conjghm.p |
. . . 4
    |
| 7 | | conjghm.m |
. . . 4
     |
| 8 | | conjsubg.f |
. . . 4
       |
| 9 | 5, 6, 7, 8, 1 | conjnmz 13485 |
. . 3
  SubGrp     |
| 10 | 4, 9 | jca 306 |
. 2
  SubGrp   
   |
| 11 | | simprl 529 |
. . 3
  SubGrp  
 
  |
| 12 | | simplrr 536 |
. . . . . 6
   SubGrp  
     |
| 13 | 12 | eleq2d 2266 |
. . . . 5
   SubGrp  
     
     |
| 14 | | subgrcl 13385 |
. . . . . . . . . . . . 13
 SubGrp 
  |
| 15 | 14 | ad3antrrr 492 |
. . . . . . . . . . . 12
    SubGrp 

    |
| 16 | | simpllr 534 |
. . . . . . . . . . . 12
    SubGrp 

    |
| 17 | 5 | subgss 13380 |
. . . . . . . . . . . . . 14
 SubGrp 
  |
| 18 | 17 | ad2antrr 488 |
. . . . . . . . . . . . 13
   SubGrp      |
| 19 | 18 | sselda 3184 |
. . . . . . . . . . . 12
    SubGrp 

    |
| 20 | 5, 6, 7 | grpaddsubass 13292 |
. . . . . . . . . . . 12
  
    
  
    |
| 21 | 15, 16, 19, 16, 20 | syl13anc 1251 |
. . . . . . . . . . 11
    SubGrp 

    
  
    |
| 22 | 21 | eqeq1d 2205 |
. . . . . . . . . 10
    SubGrp 

        
         |
| 23 | 5, 7 | grpsubcl 13282 |
. . . . . . . . . . . 12
 
     |
| 24 | 15, 19, 16, 23 | syl3anc 1249 |
. . . . . . . . . . 11
    SubGrp 

  
   |
| 25 | | simplr 528 |
. . . . . . . . . . 11
    SubGrp 

    |
| 26 | 5, 6 | grplcan 13264 |
. . . . . . . . . . 11
    
    
   
     |
| 27 | 15, 24, 25, 16, 26 | syl13anc 1251 |
. . . . . . . . . 10
    SubGrp 

    
   
     |
| 28 | 5, 6, 7 | grpsubadd 13290 |
. . . . . . . . . . 11
  
    
     |
| 29 | 15, 19, 16, 25, 28 | syl13anc 1251 |
. . . . . . . . . 10
    SubGrp 

    
     |
| 30 | 22, 27, 29 | 3bitrd 214 |
. . . . . . . . 9
    SubGrp 

        
     |
| 31 | | eqcom 2198 |
. . . . . . . . 9
      
        |
| 32 | | eqcom 2198 |
. . . . . . . . 9
  
    |
| 33 | 30, 31, 32 | 3bitr4g 223 |
. . . . . . . 8
    SubGrp 

        

    |
| 34 | 33 | rexbidva 2494 |
. . . . . . 7
   SubGrp     

    


    |
| 35 | 34 | adantlrr 483 |
. . . . . 6
   SubGrp  
    

    


    |
| 36 | 14 | ad2antrr 488 |
. . . . . . . 8
   SubGrp  
     |
| 37 | | simplrl 535 |
. . . . . . . 8
   SubGrp  
     |
| 38 | | simpr 110 |
. . . . . . . 8
   SubGrp  
     |
| 39 | 5, 6, 36, 37, 38 | grpcld 13216 |
. . . . . . 7
   SubGrp  
       |
| 40 | 8 | elrnmpt 4916 |
. . . . . . 7
                |
| 41 | 39, 40 | syl 14 |
. . . . . 6
   SubGrp  
                |
| 42 | | risset 2525 |
. . . . . . 7
  


   |
| 43 | 42 | a1i 9 |
. . . . . 6
   SubGrp  
     


    |
| 44 | 35, 41, 43 | 3bitr4d 220 |
. . . . 5
   SubGrp  
           |
| 45 | 13, 44 | bitrd 188 |
. . . 4
   SubGrp  
     
     |
| 46 | 45 | ralrimiva 2570 |
. . 3
  SubGrp  
 

        |
| 47 | 1 | elnmz 13414 |
. . 3



         |
| 48 | 11, 46, 47 | sylanbrc 417 |
. 2
  SubGrp  
 
  |
| 49 | 10, 48 | impbida 596 |
1
 SubGrp 

     |