Step | Hyp | Ref
| Expression |
1 | | conjnmz.1 |
. . . . 5
          |
2 | 1 | ssrab3 3256 |
. . . 4
 |
3 | | simpr 110 |
. . . 4
  SubGrp     |
4 | 2, 3 | sselid 3168 |
. . 3
  SubGrp     |
5 | | conjghm.x |
. . . 4
     |
6 | | conjghm.p |
. . . 4
    |
7 | | conjghm.m |
. . . 4
     |
8 | | conjsubg.f |
. . . 4
       |
9 | 5, 6, 7, 8, 1 | conjnmz 13218 |
. . 3
  SubGrp     |
10 | 4, 9 | jca 306 |
. 2
  SubGrp   
   |
11 | | simprl 529 |
. . 3
  SubGrp  
 
  |
12 | | simplrr 536 |
. . . . . 6
   SubGrp  
     |
13 | 12 | eleq2d 2259 |
. . . . 5
   SubGrp  
     
     |
14 | | subgrcl 13118 |
. . . . . . . . . . . . 13
 SubGrp 
  |
15 | 14 | ad3antrrr 492 |
. . . . . . . . . . . 12
    SubGrp 

    |
16 | | simpllr 534 |
. . . . . . . . . . . 12
    SubGrp 

    |
17 | 5 | subgss 13113 |
. . . . . . . . . . . . . 14
 SubGrp 
  |
18 | 17 | ad2antrr 488 |
. . . . . . . . . . . . 13
   SubGrp      |
19 | 18 | sselda 3170 |
. . . . . . . . . . . 12
    SubGrp 

    |
20 | 5, 6, 7 | grpaddsubass 13034 |
. . . . . . . . . . . 12
  
    
  
    |
21 | 15, 16, 19, 16, 20 | syl13anc 1251 |
. . . . . . . . . . 11
    SubGrp 

    
  
    |
22 | 21 | eqeq1d 2198 |
. . . . . . . . . 10
    SubGrp 

        
         |
23 | 5, 7 | grpsubcl 13024 |
. . . . . . . . . . . 12
 
     |
24 | 15, 19, 16, 23 | syl3anc 1249 |
. . . . . . . . . . 11
    SubGrp 

  
   |
25 | | simplr 528 |
. . . . . . . . . . 11
    SubGrp 

    |
26 | 5, 6 | grplcan 13006 |
. . . . . . . . . . 11
    
    
   
     |
27 | 15, 24, 25, 16, 26 | syl13anc 1251 |
. . . . . . . . . 10
    SubGrp 

    
   
     |
28 | 5, 6, 7 | grpsubadd 13032 |
. . . . . . . . . . 11
  
    
     |
29 | 15, 19, 16, 25, 28 | syl13anc 1251 |
. . . . . . . . . 10
    SubGrp 

    
     |
30 | 22, 27, 29 | 3bitrd 214 |
. . . . . . . . 9
    SubGrp 

        
     |
31 | | eqcom 2191 |
. . . . . . . . 9
      
        |
32 | | eqcom 2191 |
. . . . . . . . 9
  
    |
33 | 30, 31, 32 | 3bitr4g 223 |
. . . . . . . 8
    SubGrp 

        

    |
34 | 33 | rexbidva 2487 |
. . . . . . 7
   SubGrp     

    


    |
35 | 34 | adantlrr 483 |
. . . . . 6
   SubGrp  
    

    


    |
36 | 14 | ad2antrr 488 |
. . . . . . . 8
   SubGrp  
     |
37 | | simplrl 535 |
. . . . . . . 8
   SubGrp  
     |
38 | | simpr 110 |
. . . . . . . 8
   SubGrp  
     |
39 | 5, 6, 36, 37, 38 | grpcld 12959 |
. . . . . . 7
   SubGrp  
       |
40 | 8 | elrnmpt 4894 |
. . . . . . 7
                |
41 | 39, 40 | syl 14 |
. . . . . 6
   SubGrp  
                |
42 | | risset 2518 |
. . . . . . 7
  


   |
43 | 42 | a1i 9 |
. . . . . 6
   SubGrp  
     


    |
44 | 35, 41, 43 | 3bitr4d 220 |
. . . . 5
   SubGrp  
           |
45 | 13, 44 | bitrd 188 |
. . . 4
   SubGrp  
     
     |
46 | 45 | ralrimiva 2563 |
. . 3
  SubGrp  
 

        |
47 | 1 | elnmz 13147 |
. . 3



         |
48 | 11, 46, 47 | sylanbrc 417 |
. 2
  SubGrp  
 
  |
49 | 10, 48 | impbida 596 |
1
 SubGrp 

     |