ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  conjnmzb Unicode version

Theorem conjnmzb 13219
Description: Alternative condition for elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x  |-  X  =  ( Base `  G
)
conjghm.p  |-  .+  =  ( +g  `  G )
conjghm.m  |-  .-  =  ( -g `  G )
conjsubg.f  |-  F  =  ( x  e.  S  |->  ( ( A  .+  x )  .-  A
) )
conjnmz.1  |-  N  =  { y  e.  X  |  A. z  e.  X  ( ( y  .+  z )  e.  S  <->  ( z  .+  y )  e.  S ) }
Assertion
Ref Expression
conjnmzb  |-  ( S  e.  (SubGrp `  G
)  ->  ( A  e.  N  <->  ( A  e.  X  /\  S  =  ran  F ) ) )
Distinct variable groups:    x, y,  .-    x, z,  .+ , y    x, A, y, z    y, F, z    x, N    x, G, y, z    x, S, y, z    x, X, y, z
Allowed substitution hints:    F( x)    .- ( z)    N( y, z)

Proof of Theorem conjnmzb
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 conjnmz.1 . . . . 5  |-  N  =  { y  e.  X  |  A. z  e.  X  ( ( y  .+  z )  e.  S  <->  ( z  .+  y )  e.  S ) }
21ssrab3 3256 . . . 4  |-  N  C_  X
3 simpr 110 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  A  e.  N )
42, 3sselid 3168 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  A  e.  X )
5 conjghm.x . . . 4  |-  X  =  ( Base `  G
)
6 conjghm.p . . . 4  |-  .+  =  ( +g  `  G )
7 conjghm.m . . . 4  |-  .-  =  ( -g `  G )
8 conjsubg.f . . . 4  |-  F  =  ( x  e.  S  |->  ( ( A  .+  x )  .-  A
) )
95, 6, 7, 8, 1conjnmz 13218 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  S  =  ran  F )
104, 9jca 306 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  ( A  e.  X  /\  S  =  ran  F ) )
11 simprl 529 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  ->  A  e.  X )
12 simplrr 536 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  S  =  ran  F )
1312eleq2d 2259 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  (
( A  .+  w
)  e.  S  <->  ( A  .+  w )  e.  ran  F ) )
14 subgrcl 13118 . . . . . . . . . . . . 13  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
1514ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  G  e.  Grp )
16 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  A  e.  X )
175subgss 13113 . . . . . . . . . . . . . 14  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  X
)
1817ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  /\  w  e.  X )  ->  S  C_  X )
1918sselda 3170 . . . . . . . . . . . 12  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  x  e.  X )
205, 6, 7grpaddsubass 13034 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( A  e.  X  /\  x  e.  X  /\  A  e.  X
) )  ->  (
( A  .+  x
)  .-  A )  =  ( A  .+  ( x  .-  A ) ) )
2115, 16, 19, 16, 20syl13anc 1251 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  (
( A  .+  x
)  .-  A )  =  ( A  .+  ( x  .-  A ) ) )
2221eqeq1d 2198 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  (
( ( A  .+  x )  .-  A
)  =  ( A 
.+  w )  <->  ( A  .+  ( x  .-  A
) )  =  ( A  .+  w ) ) )
235, 7grpsubcl 13024 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  x  e.  X  /\  A  e.  X )  ->  ( x  .-  A
)  e.  X )
2415, 19, 16, 23syl3anc 1249 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  (
x  .-  A )  e.  X )
25 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  w  e.  X )
265, 6grplcan 13006 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( ( x  .-  A )  e.  X  /\  w  e.  X  /\  A  e.  X
) )  ->  (
( A  .+  (
x  .-  A )
)  =  ( A 
.+  w )  <->  ( x  .-  A )  =  w ) )
2715, 24, 25, 16, 26syl13anc 1251 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  (
( A  .+  (
x  .-  A )
)  =  ( A 
.+  w )  <->  ( x  .-  A )  =  w ) )
285, 6, 7grpsubadd 13032 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( x  e.  X  /\  A  e.  X  /\  w  e.  X
) )  ->  (
( x  .-  A
)  =  w  <->  ( w  .+  A )  =  x ) )
2915, 19, 16, 25, 28syl13anc 1251 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  (
( x  .-  A
)  =  w  <->  ( w  .+  A )  =  x ) )
3022, 27, 293bitrd 214 . . . . . . . . 9  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  (
( ( A  .+  x )  .-  A
)  =  ( A 
.+  w )  <->  ( w  .+  A )  =  x ) )
31 eqcom 2191 . . . . . . . . 9  |-  ( ( A  .+  w )  =  ( ( A 
.+  x )  .-  A )  <->  ( ( A  .+  x )  .-  A )  =  ( A  .+  w ) )
32 eqcom 2191 . . . . . . . . 9  |-  ( x  =  ( w  .+  A )  <->  ( w  .+  A )  =  x )
3330, 31, 323bitr4g 223 . . . . . . . 8  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  (
( A  .+  w
)  =  ( ( A  .+  x ) 
.-  A )  <->  x  =  ( w  .+  A ) ) )
3433rexbidva 2487 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  /\  w  e.  X )  ->  ( E. x  e.  S  ( A  .+  w )  =  ( ( A 
.+  x )  .-  A )  <->  E. x  e.  S  x  =  ( w  .+  A ) ) )
3534adantlrr 483 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  ( E. x  e.  S  ( A  .+  w )  =  ( ( A 
.+  x )  .-  A )  <->  E. x  e.  S  x  =  ( w  .+  A ) ) )
3614ad2antrr 488 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  G  e.  Grp )
37 simplrl 535 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  A  e.  X )
38 simpr 110 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  w  e.  X )
395, 6, 36, 37, 38grpcld 12959 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  ( A  .+  w )  e.  X )
408elrnmpt 4894 . . . . . . 7  |-  ( ( A  .+  w )  e.  X  ->  (
( A  .+  w
)  e.  ran  F  <->  E. x  e.  S  ( A  .+  w )  =  ( ( A 
.+  x )  .-  A ) ) )
4139, 40syl 14 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  (
( A  .+  w
)  e.  ran  F  <->  E. x  e.  S  ( A  .+  w )  =  ( ( A 
.+  x )  .-  A ) ) )
42 risset 2518 . . . . . . 7  |-  ( ( w  .+  A )  e.  S  <->  E. x  e.  S  x  =  ( w  .+  A ) )
4342a1i 9 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  (
( w  .+  A
)  e.  S  <->  E. x  e.  S  x  =  ( w  .+  A ) ) )
4435, 41, 433bitr4d 220 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  (
( A  .+  w
)  e.  ran  F  <->  ( w  .+  A )  e.  S ) )
4513, 44bitrd 188 . . . 4  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  (
( A  .+  w
)  e.  S  <->  ( w  .+  A )  e.  S
) )
4645ralrimiva 2563 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  ->  A. w  e.  X  ( ( A  .+  w )  e.  S  <->  ( w  .+  A )  e.  S
) )
471elnmz 13147 . . 3  |-  ( A  e.  N  <->  ( A  e.  X  /\  A. w  e.  X  ( ( A  .+  w )  e.  S  <->  ( w  .+  A )  e.  S
) ) )
4811, 46, 47sylanbrc 417 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  ->  A  e.  N )
4910, 48impbida 596 1  |-  ( S  e.  (SubGrp `  G
)  ->  ( A  e.  N  <->  ( A  e.  X  /\  S  =  ran  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   A.wral 2468   E.wrex 2469   {crab 2472    C_ wss 3144    |-> cmpt 4079   ran crn 4645   ` cfv 5235  (class class class)co 5896   Basecbs 12512   +g cplusg 12589   Grpcgrp 12945   -gcsg 12947  SubGrpcsubg 13106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1re 7935  ax-addrcl 7938
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-1st 6165  df-2nd 6166  df-inn 8950  df-2 9008  df-ndx 12515  df-slot 12516  df-base 12518  df-plusg 12602  df-0g 12763  df-mgm 12832  df-sgrp 12865  df-mnd 12878  df-grp 12948  df-minusg 12949  df-sbg 12950  df-subg 13109
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator