ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  conjnmzb Unicode version

Theorem conjnmzb 13649
Description: Alternative condition for elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x  |-  X  =  ( Base `  G
)
conjghm.p  |-  .+  =  ( +g  `  G )
conjghm.m  |-  .-  =  ( -g `  G )
conjsubg.f  |-  F  =  ( x  e.  S  |->  ( ( A  .+  x )  .-  A
) )
conjnmz.1  |-  N  =  { y  e.  X  |  A. z  e.  X  ( ( y  .+  z )  e.  S  <->  ( z  .+  y )  e.  S ) }
Assertion
Ref Expression
conjnmzb  |-  ( S  e.  (SubGrp `  G
)  ->  ( A  e.  N  <->  ( A  e.  X  /\  S  =  ran  F ) ) )
Distinct variable groups:    x, y,  .-    x, z,  .+ , y    x, A, y, z    y, F, z    x, N    x, G, y, z    x, S, y, z    x, X, y, z
Allowed substitution hints:    F( x)    .- ( z)    N( y, z)

Proof of Theorem conjnmzb
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 conjnmz.1 . . . . 5  |-  N  =  { y  e.  X  |  A. z  e.  X  ( ( y  .+  z )  e.  S  <->  ( z  .+  y )  e.  S ) }
21ssrab3 3279 . . . 4  |-  N  C_  X
3 simpr 110 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  A  e.  N )
42, 3sselid 3191 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  A  e.  X )
5 conjghm.x . . . 4  |-  X  =  ( Base `  G
)
6 conjghm.p . . . 4  |-  .+  =  ( +g  `  G )
7 conjghm.m . . . 4  |-  .-  =  ( -g `  G )
8 conjsubg.f . . . 4  |-  F  =  ( x  e.  S  |->  ( ( A  .+  x )  .-  A
) )
95, 6, 7, 8, 1conjnmz 13648 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  S  =  ran  F )
104, 9jca 306 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  A  e.  N )  ->  ( A  e.  X  /\  S  =  ran  F ) )
11 simprl 529 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  ->  A  e.  X )
12 simplrr 536 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  S  =  ran  F )
1312eleq2d 2275 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  (
( A  .+  w
)  e.  S  <->  ( A  .+  w )  e.  ran  F ) )
14 subgrcl 13548 . . . . . . . . . . . . 13  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
1514ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  G  e.  Grp )
16 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  A  e.  X )
175subgss 13543 . . . . . . . . . . . . . 14  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  X
)
1817ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  /\  w  e.  X )  ->  S  C_  X )
1918sselda 3193 . . . . . . . . . . . 12  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  x  e.  X )
205, 6, 7grpaddsubass 13455 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  ( A  e.  X  /\  x  e.  X  /\  A  e.  X
) )  ->  (
( A  .+  x
)  .-  A )  =  ( A  .+  ( x  .-  A ) ) )
2115, 16, 19, 16, 20syl13anc 1252 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  (
( A  .+  x
)  .-  A )  =  ( A  .+  ( x  .-  A ) ) )
2221eqeq1d 2214 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  (
( ( A  .+  x )  .-  A
)  =  ( A 
.+  w )  <->  ( A  .+  ( x  .-  A
) )  =  ( A  .+  w ) ) )
235, 7grpsubcl 13445 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  x  e.  X  /\  A  e.  X )  ->  ( x  .-  A
)  e.  X )
2415, 19, 16, 23syl3anc 1250 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  (
x  .-  A )  e.  X )
25 simplr 528 . . . . . . . . . . 11  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  w  e.  X )
265, 6grplcan 13427 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( ( x  .-  A )  e.  X  /\  w  e.  X  /\  A  e.  X
) )  ->  (
( A  .+  (
x  .-  A )
)  =  ( A 
.+  w )  <->  ( x  .-  A )  =  w ) )
2715, 24, 25, 16, 26syl13anc 1252 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  (
( A  .+  (
x  .-  A )
)  =  ( A 
.+  w )  <->  ( x  .-  A )  =  w ) )
285, 6, 7grpsubadd 13453 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( x  e.  X  /\  A  e.  X  /\  w  e.  X
) )  ->  (
( x  .-  A
)  =  w  <->  ( w  .+  A )  =  x ) )
2915, 19, 16, 25, 28syl13anc 1252 . . . . . . . . . 10  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  (
( x  .-  A
)  =  w  <->  ( w  .+  A )  =  x ) )
3022, 27, 293bitrd 214 . . . . . . . . 9  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  (
( ( A  .+  x )  .-  A
)  =  ( A 
.+  w )  <->  ( w  .+  A )  =  x ) )
31 eqcom 2207 . . . . . . . . 9  |-  ( ( A  .+  w )  =  ( ( A 
.+  x )  .-  A )  <->  ( ( A  .+  x )  .-  A )  =  ( A  .+  w ) )
32 eqcom 2207 . . . . . . . . 9  |-  ( x  =  ( w  .+  A )  <->  ( w  .+  A )  =  x )
3330, 31, 323bitr4g 223 . . . . . . . 8  |-  ( ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X
)  /\  w  e.  X )  /\  x  e.  S )  ->  (
( A  .+  w
)  =  ( ( A  .+  x ) 
.-  A )  <->  x  =  ( w  .+  A ) ) )
3433rexbidva 2503 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  A  e.  X )  /\  w  e.  X )  ->  ( E. x  e.  S  ( A  .+  w )  =  ( ( A 
.+  x )  .-  A )  <->  E. x  e.  S  x  =  ( w  .+  A ) ) )
3534adantlrr 483 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  ( E. x  e.  S  ( A  .+  w )  =  ( ( A 
.+  x )  .-  A )  <->  E. x  e.  S  x  =  ( w  .+  A ) ) )
3614ad2antrr 488 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  G  e.  Grp )
37 simplrl 535 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  A  e.  X )
38 simpr 110 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  w  e.  X )
395, 6, 36, 37, 38grpcld 13379 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  ( A  .+  w )  e.  X )
408elrnmpt 4928 . . . . . . 7  |-  ( ( A  .+  w )  e.  X  ->  (
( A  .+  w
)  e.  ran  F  <->  E. x  e.  S  ( A  .+  w )  =  ( ( A 
.+  x )  .-  A ) ) )
4139, 40syl 14 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  (
( A  .+  w
)  e.  ran  F  <->  E. x  e.  S  ( A  .+  w )  =  ( ( A 
.+  x )  .-  A ) ) )
42 risset 2534 . . . . . . 7  |-  ( ( w  .+  A )  e.  S  <->  E. x  e.  S  x  =  ( w  .+  A ) )
4342a1i 9 . . . . . 6  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  (
( w  .+  A
)  e.  S  <->  E. x  e.  S  x  =  ( w  .+  A ) ) )
4435, 41, 433bitr4d 220 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  (
( A  .+  w
)  e.  ran  F  <->  ( w  .+  A )  e.  S ) )
4513, 44bitrd 188 . . . 4  |-  ( ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  /\  w  e.  X )  ->  (
( A  .+  w
)  e.  S  <->  ( w  .+  A )  e.  S
) )
4645ralrimiva 2579 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  ->  A. w  e.  X  ( ( A  .+  w )  e.  S  <->  ( w  .+  A )  e.  S
) )
471elnmz 13577 . . 3  |-  ( A  e.  N  <->  ( A  e.  X  /\  A. w  e.  X  ( ( A  .+  w )  e.  S  <->  ( w  .+  A )  e.  S
) ) )
4811, 46, 47sylanbrc 417 . 2  |-  ( ( S  e.  (SubGrp `  G )  /\  ( A  e.  X  /\  S  =  ran  F ) )  ->  A  e.  N )
4910, 48impbida 596 1  |-  ( S  e.  (SubGrp `  G
)  ->  ( A  e.  N  <->  ( A  e.  X  /\  S  =  ran  F ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   {crab 2488    C_ wss 3166    |-> cmpt 4106   ran crn 4677   ` cfv 5272  (class class class)co 5946   Basecbs 12865   +g cplusg 12942   Grpcgrp 13365   -gcsg 13367  SubGrpcsubg 13536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1re 8021  ax-addrcl 8024
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-inn 9039  df-2 9097  df-ndx 12868  df-slot 12869  df-base 12871  df-plusg 12955  df-0g 13123  df-mgm 13221  df-sgrp 13267  df-mnd 13282  df-grp 13368  df-minusg 13369  df-sbg 13370  df-subg 13539
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator