| Step | Hyp | Ref
| Expression |
| 1 | | nmzsubg.2 |
. . . . . 6
     |
| 2 | 1 | subgss 13380 |
. . . . 5
 SubGrp 
  |
| 3 | 2 | sselda 3184 |
. . . 4
  SubGrp     |
| 4 | | simpll 527 |
. . . . . . . 8
   SubGrp  
 
  
SubGrp    |
| 5 | | subgrcl 13385 |
. . . . . . . . . . . . 13
 SubGrp 
  |
| 6 | 4, 5 | syl 14 |
. . . . . . . . . . . 12
   SubGrp  
 
  
  |
| 7 | 4, 2 | syl 14 |
. . . . . . . . . . . . 13
   SubGrp  
 
  
  |
| 8 | | simplrl 535 |
. . . . . . . . . . . . 13
   SubGrp  
 
  
  |
| 9 | 7, 8 | sseldd 3185 |
. . . . . . . . . . . 12
   SubGrp  
 
  
  |
| 10 | | nmzsubg.3 |
. . . . . . . . . . . . 13
    |
| 11 | | eqid 2196 |
. . . . . . . . . . . . 13
         |
| 12 | | eqid 2196 |
. . . . . . . . . . . . 13
           |
| 13 | 1, 10, 11, 12 | grplinv 13252 |
. . . . . . . . . . . 12
 
                  |
| 14 | 6, 9, 13 | syl2anc 411 |
. . . . . . . . . . 11
   SubGrp  
 
  
         
       |
| 15 | 14 | oveq1d 5940 |
. . . . . . . . . 10
   SubGrp  
 
  
          
      
   |
| 16 | 12 | subginvcl 13389 |
. . . . . . . . . . . . 13
  SubGrp              |
| 17 | 4, 8, 16 | syl2anc 411 |
. . . . . . . . . . . 12
   SubGrp  
 
  
           |
| 18 | 7, 17 | sseldd 3185 |
. . . . . . . . . . 11
   SubGrp  
 
  
           |
| 19 | | simplrr 536 |
. . . . . . . . . . 11
   SubGrp  
 
  
  |
| 20 | 1, 10 | grpass 13211 |
. . . . . . . . . . 11
                                    
     |
| 21 | 6, 18, 9, 19, 20 | syl13anc 1251 |
. . . . . . . . . 10
   SubGrp  
 
  
          
           
     |
| 22 | 1, 10, 11 | grplid 13233 |
. . . . . . . . . . 11
 
         |
| 23 | 6, 19, 22 | syl2anc 411 |
. . . . . . . . . 10
   SubGrp  
 
  
        |
| 24 | 15, 21, 23 | 3eqtr3d 2237 |
. . . . . . . . 9
   SubGrp  
 
  
         
     |
| 25 | | simpr 110 |
. . . . . . . . . 10
   SubGrp  
 
  
    |
| 26 | 10 | subgcl 13390 |
. . . . . . . . . 10
  SubGrp                             |
| 27 | 4, 17, 25, 26 | syl3anc 1249 |
. . . . . . . . 9
   SubGrp  
 
  
         
     |
| 28 | 24, 27 | eqeltrrd 2274 |
. . . . . . . 8
   SubGrp  
 
  
  |
| 29 | 10 | subgcl 13390 |
. . . . . . . 8
  SubGrp 
 
   |
| 30 | 4, 28, 8, 29 | syl3anc 1249 |
. . . . . . 7
   SubGrp  
 
  
    |
| 31 | | simpll 527 |
. . . . . . . 8
   SubGrp  
 
  
SubGrp    |
| 32 | | simplrl 535 |
. . . . . . . 8
   SubGrp  
 
  
  |
| 33 | 31, 5 | syl 14 |
. . . . . . . . . 10
   SubGrp  
 
  
  |
| 34 | | simplrr 536 |
. . . . . . . . . 10
   SubGrp  
 
  
  |
| 35 | 31, 32, 3 | syl2anc 411 |
. . . . . . . . . 10
   SubGrp  
 
  
  |
| 36 | | eqid 2196 |
. . . . . . . . . . 11
         |
| 37 | 1, 10, 36 | grppncan 13293 |
. . . . . . . . . 10
 
             |
| 38 | 33, 34, 35, 37 | syl3anc 1249 |
. . . . . . . . 9
   SubGrp  
 
  
 
          |
| 39 | | simpr 110 |
. . . . . . . . . 10
   SubGrp  
 
  
    |
| 40 | 36 | subgsubcl 13391 |
. . . . . . . . . 10
  SubGrp  

             |
| 41 | 31, 39, 32, 40 | syl3anc 1249 |
. . . . . . . . 9
   SubGrp  
 
  
 
          |
| 42 | 38, 41 | eqeltrrd 2274 |
. . . . . . . 8
   SubGrp  
 
  
  |
| 43 | 10 | subgcl 13390 |
. . . . . . . 8
  SubGrp 
 
   |
| 44 | 31, 32, 42, 43 | syl3anc 1249 |
. . . . . . 7
   SubGrp  
 
  
    |
| 45 | 30, 44 | impbida 596 |
. . . . . 6
  SubGrp  
 
 

     |
| 46 | 45 | anassrs 400 |
. . . . 5
   SubGrp      
     |
| 47 | 46 | ralrimiva 2570 |
. . . 4
  SubGrp   
 

     |
| 48 | | elnmz.1 |
. . . . 5
          |
| 49 | 48 | elnmz 13414 |
. . . 4



 

      |
| 50 | 3, 47, 49 | sylanbrc 417 |
. . 3
  SubGrp     |
| 51 | 50 | ex 115 |
. 2
 SubGrp 

   |
| 52 | 51 | ssrdv 3190 |
1
 SubGrp 
  |