ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssnmz Unicode version

Theorem ssnmz 13341
Description: A subgroup is a subset of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
elnmz.1  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }
nmzsubg.2  |-  X  =  ( Base `  G
)
nmzsubg.3  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
ssnmz  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  N
)
Distinct variable groups:    x, y, G   
x, S, y    x,  .+ , y    x, X, y
Allowed substitution hints:    N( x, y)

Proof of Theorem ssnmz
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmzsubg.2 . . . . . 6  |-  X  =  ( Base `  G
)
21subgss 13304 . . . . 5  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  X
)
32sselda 3183 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  z  e.  S )  ->  z  e.  X )
4 simpll 527 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  (
z  e.  S  /\  w  e.  X )
)  /\  ( z  .+  w )  e.  S
)  ->  S  e.  (SubGrp `  G ) )
5 subgrcl 13309 . . . . . . . . . . . . 13  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
64, 5syl 14 . . . . . . . . . . . 12  |-  ( ( ( S  e.  (SubGrp `  G )  /\  (
z  e.  S  /\  w  e.  X )
)  /\  ( z  .+  w )  e.  S
)  ->  G  e.  Grp )
74, 2syl 14 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  (SubGrp `  G )  /\  (
z  e.  S  /\  w  e.  X )
)  /\  ( z  .+  w )  e.  S
)  ->  S  C_  X
)
8 simplrl 535 . . . . . . . . . . . . 13  |-  ( ( ( S  e.  (SubGrp `  G )  /\  (
z  e.  S  /\  w  e.  X )
)  /\  ( z  .+  w )  e.  S
)  ->  z  e.  S )
97, 8sseldd 3184 . . . . . . . . . . . 12  |-  ( ( ( S  e.  (SubGrp `  G )  /\  (
z  e.  S  /\  w  e.  X )
)  /\  ( z  .+  w )  e.  S
)  ->  z  e.  X )
10 nmzsubg.3 . . . . . . . . . . . . 13  |-  .+  =  ( +g  `  G )
11 eqid 2196 . . . . . . . . . . . . 13  |-  ( 0g
`  G )  =  ( 0g `  G
)
12 eqid 2196 . . . . . . . . . . . . 13  |-  ( invg `  G )  =  ( invg `  G )
131, 10, 11, 12grplinv 13182 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  z  e.  X )  ->  ( ( ( invg `  G ) `
 z )  .+  z )  =  ( 0g `  G ) )
146, 9, 13syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  (
z  e.  S  /\  w  e.  X )
)  /\  ( z  .+  w )  e.  S
)  ->  ( (
( invg `  G ) `  z
)  .+  z )  =  ( 0g `  G ) )
1514oveq1d 5937 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  (
z  e.  S  /\  w  e.  X )
)  /\  ( z  .+  w )  e.  S
)  ->  ( (
( ( invg `  G ) `  z
)  .+  z )  .+  w )  =  ( ( 0g `  G
)  .+  w )
)
1612subginvcl 13313 . . . . . . . . . . . . 13  |-  ( ( S  e.  (SubGrp `  G )  /\  z  e.  S )  ->  (
( invg `  G ) `  z
)  e.  S )
174, 8, 16syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( S  e.  (SubGrp `  G )  /\  (
z  e.  S  /\  w  e.  X )
)  /\  ( z  .+  w )  e.  S
)  ->  ( ( invg `  G ) `
 z )  e.  S )
187, 17sseldd 3184 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  (
z  e.  S  /\  w  e.  X )
)  /\  ( z  .+  w )  e.  S
)  ->  ( ( invg `  G ) `
 z )  e.  X )
19 simplrr 536 . . . . . . . . . . 11  |-  ( ( ( S  e.  (SubGrp `  G )  /\  (
z  e.  S  /\  w  e.  X )
)  /\  ( z  .+  w )  e.  S
)  ->  w  e.  X )
201, 10grpass 13141 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  ( ( ( invg `  G ) `
 z )  e.  X  /\  z  e.  X  /\  w  e.  X ) )  -> 
( ( ( ( invg `  G
) `  z )  .+  z )  .+  w
)  =  ( ( ( invg `  G ) `  z
)  .+  ( z  .+  w ) ) )
216, 18, 9, 19, 20syl13anc 1251 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  (
z  e.  S  /\  w  e.  X )
)  /\  ( z  .+  w )  e.  S
)  ->  ( (
( ( invg `  G ) `  z
)  .+  z )  .+  w )  =  ( ( ( invg `  G ) `  z
)  .+  ( z  .+  w ) ) )
221, 10, 11grplid 13163 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  w  e.  X )  ->  ( ( 0g `  G )  .+  w
)  =  w )
236, 19, 22syl2anc 411 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  (
z  e.  S  /\  w  e.  X )
)  /\  ( z  .+  w )  e.  S
)  ->  ( ( 0g `  G )  .+  w )  =  w )
2415, 21, 233eqtr3d 2237 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  (
z  e.  S  /\  w  e.  X )
)  /\  ( z  .+  w )  e.  S
)  ->  ( (
( invg `  G ) `  z
)  .+  ( z  .+  w ) )  =  w )
25 simpr 110 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  (
z  e.  S  /\  w  e.  X )
)  /\  ( z  .+  w )  e.  S
)  ->  ( z  .+  w )  e.  S
)
2610subgcl 13314 . . . . . . . . . 10  |-  ( ( S  e.  (SubGrp `  G )  /\  (
( invg `  G ) `  z
)  e.  S  /\  ( z  .+  w
)  e.  S )  ->  ( ( ( invg `  G
) `  z )  .+  ( z  .+  w
) )  e.  S
)
274, 17, 25, 26syl3anc 1249 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  (
z  e.  S  /\  w  e.  X )
)  /\  ( z  .+  w )  e.  S
)  ->  ( (
( invg `  G ) `  z
)  .+  ( z  .+  w ) )  e.  S )
2824, 27eqeltrrd 2274 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  (
z  e.  S  /\  w  e.  X )
)  /\  ( z  .+  w )  e.  S
)  ->  w  e.  S )
2910subgcl 13314 . . . . . . . 8  |-  ( ( S  e.  (SubGrp `  G )  /\  w  e.  S  /\  z  e.  S )  ->  (
w  .+  z )  e.  S )
304, 28, 8, 29syl3anc 1249 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  (
z  e.  S  /\  w  e.  X )
)  /\  ( z  .+  w )  e.  S
)  ->  ( w  .+  z )  e.  S
)
31 simpll 527 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  (
z  e.  S  /\  w  e.  X )
)  /\  ( w  .+  z )  e.  S
)  ->  S  e.  (SubGrp `  G ) )
32 simplrl 535 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  (
z  e.  S  /\  w  e.  X )
)  /\  ( w  .+  z )  e.  S
)  ->  z  e.  S )
3331, 5syl 14 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  (
z  e.  S  /\  w  e.  X )
)  /\  ( w  .+  z )  e.  S
)  ->  G  e.  Grp )
34 simplrr 536 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  (
z  e.  S  /\  w  e.  X )
)  /\  ( w  .+  z )  e.  S
)  ->  w  e.  X )
3531, 32, 3syl2anc 411 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  (
z  e.  S  /\  w  e.  X )
)  /\  ( w  .+  z )  e.  S
)  ->  z  e.  X )
36 eqid 2196 . . . . . . . . . . 11  |-  ( -g `  G )  =  (
-g `  G )
371, 10, 36grppncan 13223 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  w  e.  X  /\  z  e.  X )  ->  ( ( w  .+  z ) ( -g `  G ) z )  =  w )
3833, 34, 35, 37syl3anc 1249 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  (
z  e.  S  /\  w  e.  X )
)  /\  ( w  .+  z )  e.  S
)  ->  ( (
w  .+  z )
( -g `  G ) z )  =  w )
39 simpr 110 . . . . . . . . . 10  |-  ( ( ( S  e.  (SubGrp `  G )  /\  (
z  e.  S  /\  w  e.  X )
)  /\  ( w  .+  z )  e.  S
)  ->  ( w  .+  z )  e.  S
)
4036subgsubcl 13315 . . . . . . . . . 10  |-  ( ( S  e.  (SubGrp `  G )  /\  (
w  .+  z )  e.  S  /\  z  e.  S )  ->  (
( w  .+  z
) ( -g `  G
) z )  e.  S )
4131, 39, 32, 40syl3anc 1249 . . . . . . . . 9  |-  ( ( ( S  e.  (SubGrp `  G )  /\  (
z  e.  S  /\  w  e.  X )
)  /\  ( w  .+  z )  e.  S
)  ->  ( (
w  .+  z )
( -g `  G ) z )  e.  S
)
4238, 41eqeltrrd 2274 . . . . . . . 8  |-  ( ( ( S  e.  (SubGrp `  G )  /\  (
z  e.  S  /\  w  e.  X )
)  /\  ( w  .+  z )  e.  S
)  ->  w  e.  S )
4310subgcl 13314 . . . . . . . 8  |-  ( ( S  e.  (SubGrp `  G )  /\  z  e.  S  /\  w  e.  S )  ->  (
z  .+  w )  e.  S )
4431, 32, 42, 43syl3anc 1249 . . . . . . 7  |-  ( ( ( S  e.  (SubGrp `  G )  /\  (
z  e.  S  /\  w  e.  X )
)  /\  ( w  .+  z )  e.  S
)  ->  ( z  .+  w )  e.  S
)
4530, 44impbida 596 . . . . . 6  |-  ( ( S  e.  (SubGrp `  G )  /\  (
z  e.  S  /\  w  e.  X )
)  ->  ( (
z  .+  w )  e.  S  <->  ( w  .+  z )  e.  S
) )
4645anassrs 400 . . . . 5  |-  ( ( ( S  e.  (SubGrp `  G )  /\  z  e.  S )  /\  w  e.  X )  ->  (
( z  .+  w
)  e.  S  <->  ( w  .+  z )  e.  S
) )
4746ralrimiva 2570 . . . 4  |-  ( ( S  e.  (SubGrp `  G )  /\  z  e.  S )  ->  A. w  e.  X  ( (
z  .+  w )  e.  S  <->  ( w  .+  z )  e.  S
) )
48 elnmz.1 . . . . 5  |-  N  =  { x  e.  X  |  A. y  e.  X  ( ( x  .+  y )  e.  S  <->  ( y  .+  x )  e.  S ) }
4948elnmz 13338 . . . 4  |-  ( z  e.  N  <->  ( z  e.  X  /\  A. w  e.  X  ( (
z  .+  w )  e.  S  <->  ( w  .+  z )  e.  S
) ) )
503, 47, 49sylanbrc 417 . . 3  |-  ( ( S  e.  (SubGrp `  G )  /\  z  e.  S )  ->  z  e.  N )
5150ex 115 . 2  |-  ( S  e.  (SubGrp `  G
)  ->  ( z  e.  S  ->  z  e.  N ) )
5251ssrdv 3189 1  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  N
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   {crab 2479    C_ wss 3157   ` cfv 5258  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   0gc0g 12927   Grpcgrp 13132   invgcminusg 13133   -gcsg 13134  SubGrpcsubg 13297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-sbg 13137  df-subg 13300
This theorem is referenced by:  nmznsg  13343
  Copyright terms: Public domain W3C validator