ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fclim Unicode version

Theorem fclim 11302
Description: The limit relation is function-like, and with codomian the complex numbers. (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
fclim  |-  ~~>  : dom  ~~>  --> CC

Proof of Theorem fclim
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrel 11288 . . . 4  |-  Rel  ~~>
2 climuni 11301 . . . . . . 7  |-  ( ( x  ~~>  y  /\  x  ~~>  z )  ->  y  =  z )
32ax-gen 1449 . . . . . 6  |-  A. z
( ( x  ~~>  y  /\  x 
~~>  z )  ->  y  =  z )
43ax-gen 1449 . . . . 5  |-  A. y A. z ( ( x  ~~>  y  /\  x  ~~>  z )  ->  y  =  z )
54ax-gen 1449 . . . 4  |-  A. x A. y A. z ( ( x  ~~>  y  /\  x 
~~>  z )  ->  y  =  z )
6 dffun2 5227 . . . 4  |-  ( Fun  ~~>  <->  ( Rel  ~~>  /\  A. x A. y A. z ( ( x  ~~>  y  /\  x 
~~>  z )  ->  y  =  z ) ) )
71, 5, 6mpbir2an 942 . . 3  |-  Fun  ~~>
8 funfn 5247 . . 3  |-  ( Fun  ~~>  <->  ~~>  Fn 
dom 
~~>  )
97, 8mpbi 145 . 2  |-  ~~>  Fn  dom  ~~>
10 vex 2741 . . . . 5  |-  y  e. 
_V
1110elrn 4871 . . . 4  |-  ( y  e.  ran  ~~>  <->  E. x  x 
~~>  y )
12 climcl 11290 . . . . 5  |-  ( x  ~~>  y  ->  y  e.  CC )
1312exlimiv 1598 . . . 4  |-  ( E. x  x  ~~>  y  -> 
y  e.  CC )
1411, 13sylbi 121 . . 3  |-  ( y  e.  ran  ~~>  ->  y  e.  CC )
1514ssriv 3160 . 2  |-  ran  ~~>  C_  CC
16 df-f 5221 . 2  |-  (  ~~>  : dom  ~~>  --> CC  <->  (  ~~>  Fn  dom  ~~>  /\  ran  ~~>  C_  CC ) )
179, 15, 16mpbir2an 942 1  |-  ~~>  : dom  ~~>  --> CC
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1351   E.wex 1492    e. wcel 2148    C_ wss 3130   class class class wbr 4004   dom cdm 4627   ran crn 4628   Rel wrel 4632   Fun wfun 5211    Fn wfn 5212   -->wf 5213   CCcc 7809    ~~> cli 11286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-iinf 4588  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929  ax-arch 7930  ax-caucvg 7931
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-if 3536  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-tr 4103  df-id 4294  df-po 4297  df-iso 4298  df-iord 4367  df-on 4369  df-ilim 4370  df-suc 4372  df-iom 4591  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-1st 6141  df-2nd 6142  df-recs 6306  df-frec 6392  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-2 8978  df-3 8979  df-4 8980  df-n0 9177  df-z 9254  df-uz 9529  df-rp 9654  df-seqfrec 10446  df-exp 10520  df-cj 10851  df-re 10852  df-im 10853  df-rsqrt 11007  df-abs 11008  df-clim 11287
This theorem is referenced by:  climdm  11303  sum0  11396  isumz  11397  fsumsersdc  11403  isumclim  11429  isumcl  11433  zprodap0  11589
  Copyright terms: Public domain W3C validator