ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrn GIF version

Theorem elrn 4940
Description: Membership in a range. (Contributed by NM, 2-Apr-2004.)
Hypothesis
Ref Expression
elrn.1 𝐴 ∈ V
Assertion
Ref Expression
elrn (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem elrn
StepHypRef Expression
1 elrn.1 . . 3 𝐴 ∈ V
21elrn2 4939 . 2 (𝐴 ∈ ran 𝐵 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵)
3 df-br 4060 . . 3 (𝑥𝐵𝐴 ↔ ⟨𝑥, 𝐴⟩ ∈ 𝐵)
43exbii 1629 . 2 (∃𝑥 𝑥𝐵𝐴 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵)
52, 4bitr4i 187 1 (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105  wex 1516  wcel 2178  Vcvv 2776  cop 3646   class class class wbr 4059  ran crn 4694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-cnv 4701  df-dm 4703  df-rn 4704
This theorem is referenced by:  dmcosseq  4969  rnco  5208  dffo4  5751  rntpos  6366  fclim  11720  dvfgg  15275
  Copyright terms: Public domain W3C validator