ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrn GIF version

Theorem elrn 4905
Description: Membership in a range. (Contributed by NM, 2-Apr-2004.)
Hypothesis
Ref Expression
elrn.1 𝐴 ∈ V
Assertion
Ref Expression
elrn (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem elrn
StepHypRef Expression
1 elrn.1 . . 3 𝐴 ∈ V
21elrn2 4904 . 2 (𝐴 ∈ ran 𝐵 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵)
3 df-br 4030 . . 3 (𝑥𝐵𝐴 ↔ ⟨𝑥, 𝐴⟩ ∈ 𝐵)
43exbii 1616 . 2 (∃𝑥 𝑥𝐵𝐴 ↔ ∃𝑥𝑥, 𝐴⟩ ∈ 𝐵)
52, 4bitr4i 187 1 (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)
Colors of variables: wff set class
Syntax hints:  wb 105  wex 1503  wcel 2164  Vcvv 2760  cop 3621   class class class wbr 4029  ran crn 4660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-cnv 4667  df-dm 4669  df-rn 4670
This theorem is referenced by:  dmcosseq  4933  rnco  5172  dffo4  5706  rntpos  6310  fclim  11437  dvfgg  14842
  Copyright terms: Public domain W3C validator