Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elrn | GIF version |
Description: Membership in a range. (Contributed by NM, 2-Apr-2004.) |
Ref | Expression |
---|---|
elrn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elrn | ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrn.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | elrn2 4851 | . 2 ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵) |
3 | df-br 3988 | . . 3 ⊢ (𝑥𝐵𝐴 ↔ 〈𝑥, 𝐴〉 ∈ 𝐵) | |
4 | 3 | exbii 1598 | . 2 ⊢ (∃𝑥 𝑥𝐵𝐴 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵) |
5 | 2, 4 | bitr4i 186 | 1 ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∃wex 1485 ∈ wcel 2141 Vcvv 2730 〈cop 3584 class class class wbr 3987 ran crn 4610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-br 3988 df-opab 4049 df-cnv 4617 df-dm 4619 df-rn 4620 |
This theorem is referenced by: dmcosseq 4880 rnco 5115 dffo4 5642 rntpos 6234 fclim 11250 dvfgg 13416 |
Copyright terms: Public domain | W3C validator |