![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elrn | GIF version |
Description: Membership in a range. (Contributed by NM, 2-Apr-2004.) |
Ref | Expression |
---|---|
elrn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elrn | ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrn.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | elrn2 4904 | . 2 ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵) |
3 | df-br 4030 | . . 3 ⊢ (𝑥𝐵𝐴 ↔ 〈𝑥, 𝐴〉 ∈ 𝐵) | |
4 | 3 | exbii 1616 | . 2 ⊢ (∃𝑥 𝑥𝐵𝐴 ↔ ∃𝑥〈𝑥, 𝐴〉 ∈ 𝐵) |
5 | 2, 4 | bitr4i 187 | 1 ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 ∃wex 1503 ∈ wcel 2164 Vcvv 2760 〈cop 3621 class class class wbr 4029 ran crn 4660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-cnv 4667 df-dm 4669 df-rn 4670 |
This theorem is referenced by: dmcosseq 4933 rnco 5172 dffo4 5706 rntpos 6310 fclim 11437 dvfgg 14842 |
Copyright terms: Public domain | W3C validator |