| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnsucelsuc | Unicode version | ||
| Description: Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucelsucr 4600, but the forward direction, for all ordinals, implies excluded middle as seen as onsucelsucexmid 4622. (Contributed by Jim Kingdon, 25-Aug-2019.) |
| Ref | Expression |
|---|---|
| nnsucelsuc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2293 |
. . . 4
| |
| 2 | suceq 4493 |
. . . . 5
| |
| 3 | 2 | eleq2d 2299 |
. . . 4
|
| 4 | 1, 3 | imbi12d 234 |
. . 3
|
| 5 | eleq2 2293 |
. . . 4
| |
| 6 | suceq 4493 |
. . . . 5
| |
| 7 | 6 | eleq2d 2299 |
. . . 4
|
| 8 | 5, 7 | imbi12d 234 |
. . 3
|
| 9 | eleq2 2293 |
. . . 4
| |
| 10 | suceq 4493 |
. . . . 5
| |
| 11 | 10 | eleq2d 2299 |
. . . 4
|
| 12 | 9, 11 | imbi12d 234 |
. . 3
|
| 13 | eleq2 2293 |
. . . 4
| |
| 14 | suceq 4493 |
. . . . 5
| |
| 15 | 14 | eleq2d 2299 |
. . . 4
|
| 16 | 13, 15 | imbi12d 234 |
. . 3
|
| 17 | noel 3495 |
. . . 4
| |
| 18 | 17 | pm2.21i 649 |
. . 3
|
| 19 | elsuci 4494 |
. . . . . . . 8
| |
| 20 | 19 | adantl 277 |
. . . . . . 7
|
| 21 | simpl 109 |
. . . . . . . 8
| |
| 22 | suceq 4493 |
. . . . . . . . 9
| |
| 23 | 22 | a1i 9 |
. . . . . . . 8
|
| 24 | 21, 23 | orim12d 791 |
. . . . . . 7
|
| 25 | 20, 24 | mpd 13 |
. . . . . 6
|
| 26 | vex 2802 |
. . . . . . . 8
| |
| 27 | 26 | sucex 4591 |
. . . . . . 7
|
| 28 | 27 | elsuc2 4498 |
. . . . . 6
|
| 29 | 25, 28 | sylibr 134 |
. . . . 5
|
| 30 | 29 | ex 115 |
. . . 4
|
| 31 | 30 | a1i 9 |
. . 3
|
| 32 | 4, 8, 12, 16, 18, 31 | finds 4692 |
. 2
|
| 33 | nnon 4702 |
. . 3
| |
| 34 | onsucelsucr 4600 |
. . 3
| |
| 35 | 33, 34 | syl 14 |
. 2
|
| 36 | 32, 35 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-tr 4183 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 |
| This theorem is referenced by: nnsucsssuc 6638 nntri3or 6639 nnsucuniel 6641 nnaordi 6654 ennnfonelemhom 12986 |
| Copyright terms: Public domain | W3C validator |