ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsucelsuc Unicode version

Theorem nnsucelsuc 6459
Description: Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucelsucr 4485, but the forward direction, for all ordinals, implies excluded middle as seen as onsucelsucexmid 4507. (Contributed by Jim Kingdon, 25-Aug-2019.)
Assertion
Ref Expression
nnsucelsuc  |-  ( B  e.  om  ->  ( A  e.  B  <->  suc  A  e. 
suc  B ) )

Proof of Theorem nnsucelsuc
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2230 . . . 4  |-  ( x  =  (/)  ->  ( A  e.  x  <->  A  e.  (/) ) )
2 suceq 4380 . . . . 5  |-  ( x  =  (/)  ->  suc  x  =  suc  (/) )
32eleq2d 2236 . . . 4  |-  ( x  =  (/)  ->  ( suc 
A  e.  suc  x  <->  suc 
A  e.  suc  (/) ) )
41, 3imbi12d 233 . . 3  |-  ( x  =  (/)  ->  ( ( A  e.  x  ->  suc  A  e.  suc  x
)  <->  ( A  e.  (/)  ->  suc  A  e.  suc  (/) ) ) )
5 eleq2 2230 . . . 4  |-  ( x  =  y  ->  ( A  e.  x  <->  A  e.  y ) )
6 suceq 4380 . . . . 5  |-  ( x  =  y  ->  suc  x  =  suc  y )
76eleq2d 2236 . . . 4  |-  ( x  =  y  ->  ( suc  A  e.  suc  x  <->  suc 
A  e.  suc  y
) )
85, 7imbi12d 233 . . 3  |-  ( x  =  y  ->  (
( A  e.  x  ->  suc  A  e.  suc  x )  <->  ( A  e.  y  ->  suc  A  e.  suc  y ) ) )
9 eleq2 2230 . . . 4  |-  ( x  =  suc  y  -> 
( A  e.  x  <->  A  e.  suc  y ) )
10 suceq 4380 . . . . 5  |-  ( x  =  suc  y  ->  suc  x  =  suc  suc  y )
1110eleq2d 2236 . . . 4  |-  ( x  =  suc  y  -> 
( suc  A  e.  suc  x  <->  suc  A  e.  suc  suc  y ) )
129, 11imbi12d 233 . . 3  |-  ( x  =  suc  y  -> 
( ( A  e.  x  ->  suc  A  e. 
suc  x )  <->  ( A  e.  suc  y  ->  suc  A  e.  suc  suc  y
) ) )
13 eleq2 2230 . . . 4  |-  ( x  =  B  ->  ( A  e.  x  <->  A  e.  B ) )
14 suceq 4380 . . . . 5  |-  ( x  =  B  ->  suc  x  =  suc  B )
1514eleq2d 2236 . . . 4  |-  ( x  =  B  ->  ( suc  A  e.  suc  x  <->  suc 
A  e.  suc  B
) )
1613, 15imbi12d 233 . . 3  |-  ( x  =  B  ->  (
( A  e.  x  ->  suc  A  e.  suc  x )  <->  ( A  e.  B  ->  suc  A  e.  suc  B ) ) )
17 noel 3413 . . . 4  |-  -.  A  e.  (/)
1817pm2.21i 636 . . 3  |-  ( A  e.  (/)  ->  suc  A  e. 
suc  (/) )
19 elsuci 4381 . . . . . . . 8  |-  ( A  e.  suc  y  -> 
( A  e.  y  \/  A  =  y ) )
2019adantl 275 . . . . . . 7  |-  ( ( ( A  e.  y  ->  suc  A  e.  suc  y )  /\  A  e.  suc  y )  -> 
( A  e.  y  \/  A  =  y ) )
21 simpl 108 . . . . . . . 8  |-  ( ( ( A  e.  y  ->  suc  A  e.  suc  y )  /\  A  e.  suc  y )  -> 
( A  e.  y  ->  suc  A  e.  suc  y ) )
22 suceq 4380 . . . . . . . . 9  |-  ( A  =  y  ->  suc  A  =  suc  y )
2322a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  y  ->  suc  A  e.  suc  y )  /\  A  e.  suc  y )  -> 
( A  =  y  ->  suc  A  =  suc  y ) )
2421, 23orim12d 776 . . . . . . 7  |-  ( ( ( A  e.  y  ->  suc  A  e.  suc  y )  /\  A  e.  suc  y )  -> 
( ( A  e.  y  \/  A  =  y )  ->  ( suc  A  e.  suc  y  \/  suc  A  =  suc  y ) ) )
2520, 24mpd 13 . . . . . 6  |-  ( ( ( A  e.  y  ->  suc  A  e.  suc  y )  /\  A  e.  suc  y )  -> 
( suc  A  e.  suc  y  \/  suc  A  =  suc  y ) )
26 vex 2729 . . . . . . . 8  |-  y  e. 
_V
2726sucex 4476 . . . . . . 7  |-  suc  y  e.  _V
2827elsuc2 4385 . . . . . 6  |-  ( suc 
A  e.  suc  suc  y 
<->  ( suc  A  e. 
suc  y  \/  suc  A  =  suc  y ) )
2925, 28sylibr 133 . . . . 5  |-  ( ( ( A  e.  y  ->  suc  A  e.  suc  y )  /\  A  e.  suc  y )  ->  suc  A  e.  suc  suc  y )
3029ex 114 . . . 4  |-  ( ( A  e.  y  ->  suc  A  e.  suc  y
)  ->  ( A  e.  suc  y  ->  suc  A  e.  suc  suc  y
) )
3130a1i 9 . . 3  |-  ( y  e.  om  ->  (
( A  e.  y  ->  suc  A  e.  suc  y )  ->  ( A  e.  suc  y  ->  suc  A  e.  suc  suc  y ) ) )
324, 8, 12, 16, 18, 31finds 4577 . 2  |-  ( B  e.  om  ->  ( A  e.  B  ->  suc 
A  e.  suc  B
) )
33 nnon 4587 . . 3  |-  ( B  e.  om  ->  B  e.  On )
34 onsucelsucr 4485 . . 3  |-  ( B  e.  On  ->  ( suc  A  e.  suc  B  ->  A  e.  B ) )
3533, 34syl 14 . 2  |-  ( B  e.  om  ->  ( suc  A  e.  suc  B  ->  A  e.  B ) )
3632, 35impbid 128 1  |-  ( B  e.  om  ->  ( A  e.  B  <->  suc  A  e. 
suc  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136   (/)c0 3409   Oncon0 4341   suc csuc 4343   omcom 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-int 3825  df-tr 4081  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568
This theorem is referenced by:  nnsucsssuc  6460  nntri3or  6461  nnsucuniel  6463  nnaordi  6476  ennnfonelemhom  12348
  Copyright terms: Public domain W3C validator