Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnsucelsuc | Unicode version |
Description: Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucelsucr 4485, but the forward direction, for all ordinals, implies excluded middle as seen as onsucelsucexmid 4507. (Contributed by Jim Kingdon, 25-Aug-2019.) |
Ref | Expression |
---|---|
nnsucelsuc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2230 | . . . 4 | |
2 | suceq 4380 | . . . . 5 | |
3 | 2 | eleq2d 2236 | . . . 4 |
4 | 1, 3 | imbi12d 233 | . . 3 |
5 | eleq2 2230 | . . . 4 | |
6 | suceq 4380 | . . . . 5 | |
7 | 6 | eleq2d 2236 | . . . 4 |
8 | 5, 7 | imbi12d 233 | . . 3 |
9 | eleq2 2230 | . . . 4 | |
10 | suceq 4380 | . . . . 5 | |
11 | 10 | eleq2d 2236 | . . . 4 |
12 | 9, 11 | imbi12d 233 | . . 3 |
13 | eleq2 2230 | . . . 4 | |
14 | suceq 4380 | . . . . 5 | |
15 | 14 | eleq2d 2236 | . . . 4 |
16 | 13, 15 | imbi12d 233 | . . 3 |
17 | noel 3413 | . . . 4 | |
18 | 17 | pm2.21i 636 | . . 3 |
19 | elsuci 4381 | . . . . . . . 8 | |
20 | 19 | adantl 275 | . . . . . . 7 |
21 | simpl 108 | . . . . . . . 8 | |
22 | suceq 4380 | . . . . . . . . 9 | |
23 | 22 | a1i 9 | . . . . . . . 8 |
24 | 21, 23 | orim12d 776 | . . . . . . 7 |
25 | 20, 24 | mpd 13 | . . . . . 6 |
26 | vex 2729 | . . . . . . . 8 | |
27 | 26 | sucex 4476 | . . . . . . 7 |
28 | 27 | elsuc2 4385 | . . . . . 6 |
29 | 25, 28 | sylibr 133 | . . . . 5 |
30 | 29 | ex 114 | . . . 4 |
31 | 30 | a1i 9 | . . 3 |
32 | 4, 8, 12, 16, 18, 31 | finds 4577 | . 2 |
33 | nnon 4587 | . . 3 | |
34 | onsucelsucr 4485 | . . 3 | |
35 | 33, 34 | syl 14 | . 2 |
36 | 32, 35 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 wceq 1343 wcel 2136 c0 3409 con0 4341 csuc 4343 com 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 |
This theorem is referenced by: nnsucsssuc 6460 nntri3or 6461 nnsucuniel 6463 nnaordi 6476 ennnfonelemhom 12348 |
Copyright terms: Public domain | W3C validator |