| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnsucelsuc | Unicode version | ||
| Description: Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucelsucr 4545, but the forward direction, for all ordinals, implies excluded middle as seen as onsucelsucexmid 4567. (Contributed by Jim Kingdon, 25-Aug-2019.) |
| Ref | Expression |
|---|---|
| nnsucelsuc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2260 |
. . . 4
| |
| 2 | suceq 4438 |
. . . . 5
| |
| 3 | 2 | eleq2d 2266 |
. . . 4
|
| 4 | 1, 3 | imbi12d 234 |
. . 3
|
| 5 | eleq2 2260 |
. . . 4
| |
| 6 | suceq 4438 |
. . . . 5
| |
| 7 | 6 | eleq2d 2266 |
. . . 4
|
| 8 | 5, 7 | imbi12d 234 |
. . 3
|
| 9 | eleq2 2260 |
. . . 4
| |
| 10 | suceq 4438 |
. . . . 5
| |
| 11 | 10 | eleq2d 2266 |
. . . 4
|
| 12 | 9, 11 | imbi12d 234 |
. . 3
|
| 13 | eleq2 2260 |
. . . 4
| |
| 14 | suceq 4438 |
. . . . 5
| |
| 15 | 14 | eleq2d 2266 |
. . . 4
|
| 16 | 13, 15 | imbi12d 234 |
. . 3
|
| 17 | noel 3455 |
. . . 4
| |
| 18 | 17 | pm2.21i 647 |
. . 3
|
| 19 | elsuci 4439 |
. . . . . . . 8
| |
| 20 | 19 | adantl 277 |
. . . . . . 7
|
| 21 | simpl 109 |
. . . . . . . 8
| |
| 22 | suceq 4438 |
. . . . . . . . 9
| |
| 23 | 22 | a1i 9 |
. . . . . . . 8
|
| 24 | 21, 23 | orim12d 787 |
. . . . . . 7
|
| 25 | 20, 24 | mpd 13 |
. . . . . 6
|
| 26 | vex 2766 |
. . . . . . . 8
| |
| 27 | 26 | sucex 4536 |
. . . . . . 7
|
| 28 | 27 | elsuc2 4443 |
. . . . . 6
|
| 29 | 25, 28 | sylibr 134 |
. . . . 5
|
| 30 | 29 | ex 115 |
. . . 4
|
| 31 | 30 | a1i 9 |
. . 3
|
| 32 | 4, 8, 12, 16, 18, 31 | finds 4637 |
. 2
|
| 33 | nnon 4647 |
. . 3
| |
| 34 | onsucelsucr 4545 |
. . 3
| |
| 35 | 33, 34 | syl 14 |
. 2
|
| 36 | 32, 35 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-tr 4133 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 |
| This theorem is referenced by: nnsucsssuc 6559 nntri3or 6560 nnsucuniel 6562 nnaordi 6575 ennnfonelemhom 12657 |
| Copyright terms: Public domain | W3C validator |