ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnsucelsuc Unicode version

Theorem nnsucelsuc 6544
Description: Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucelsucr 4540, but the forward direction, for all ordinals, implies excluded middle as seen as onsucelsucexmid 4562. (Contributed by Jim Kingdon, 25-Aug-2019.)
Assertion
Ref Expression
nnsucelsuc  |-  ( B  e.  om  ->  ( A  e.  B  <->  suc  A  e. 
suc  B ) )

Proof of Theorem nnsucelsuc
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2257 . . . 4  |-  ( x  =  (/)  ->  ( A  e.  x  <->  A  e.  (/) ) )
2 suceq 4433 . . . . 5  |-  ( x  =  (/)  ->  suc  x  =  suc  (/) )
32eleq2d 2263 . . . 4  |-  ( x  =  (/)  ->  ( suc 
A  e.  suc  x  <->  suc 
A  e.  suc  (/) ) )
41, 3imbi12d 234 . . 3  |-  ( x  =  (/)  ->  ( ( A  e.  x  ->  suc  A  e.  suc  x
)  <->  ( A  e.  (/)  ->  suc  A  e.  suc  (/) ) ) )
5 eleq2 2257 . . . 4  |-  ( x  =  y  ->  ( A  e.  x  <->  A  e.  y ) )
6 suceq 4433 . . . . 5  |-  ( x  =  y  ->  suc  x  =  suc  y )
76eleq2d 2263 . . . 4  |-  ( x  =  y  ->  ( suc  A  e.  suc  x  <->  suc 
A  e.  suc  y
) )
85, 7imbi12d 234 . . 3  |-  ( x  =  y  ->  (
( A  e.  x  ->  suc  A  e.  suc  x )  <->  ( A  e.  y  ->  suc  A  e.  suc  y ) ) )
9 eleq2 2257 . . . 4  |-  ( x  =  suc  y  -> 
( A  e.  x  <->  A  e.  suc  y ) )
10 suceq 4433 . . . . 5  |-  ( x  =  suc  y  ->  suc  x  =  suc  suc  y )
1110eleq2d 2263 . . . 4  |-  ( x  =  suc  y  -> 
( suc  A  e.  suc  x  <->  suc  A  e.  suc  suc  y ) )
129, 11imbi12d 234 . . 3  |-  ( x  =  suc  y  -> 
( ( A  e.  x  ->  suc  A  e. 
suc  x )  <->  ( A  e.  suc  y  ->  suc  A  e.  suc  suc  y
) ) )
13 eleq2 2257 . . . 4  |-  ( x  =  B  ->  ( A  e.  x  <->  A  e.  B ) )
14 suceq 4433 . . . . 5  |-  ( x  =  B  ->  suc  x  =  suc  B )
1514eleq2d 2263 . . . 4  |-  ( x  =  B  ->  ( suc  A  e.  suc  x  <->  suc 
A  e.  suc  B
) )
1613, 15imbi12d 234 . . 3  |-  ( x  =  B  ->  (
( A  e.  x  ->  suc  A  e.  suc  x )  <->  ( A  e.  B  ->  suc  A  e.  suc  B ) ) )
17 noel 3450 . . . 4  |-  -.  A  e.  (/)
1817pm2.21i 647 . . 3  |-  ( A  e.  (/)  ->  suc  A  e. 
suc  (/) )
19 elsuci 4434 . . . . . . . 8  |-  ( A  e.  suc  y  -> 
( A  e.  y  \/  A  =  y ) )
2019adantl 277 . . . . . . 7  |-  ( ( ( A  e.  y  ->  suc  A  e.  suc  y )  /\  A  e.  suc  y )  -> 
( A  e.  y  \/  A  =  y ) )
21 simpl 109 . . . . . . . 8  |-  ( ( ( A  e.  y  ->  suc  A  e.  suc  y )  /\  A  e.  suc  y )  -> 
( A  e.  y  ->  suc  A  e.  suc  y ) )
22 suceq 4433 . . . . . . . . 9  |-  ( A  =  y  ->  suc  A  =  suc  y )
2322a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  y  ->  suc  A  e.  suc  y )  /\  A  e.  suc  y )  -> 
( A  =  y  ->  suc  A  =  suc  y ) )
2421, 23orim12d 787 . . . . . . 7  |-  ( ( ( A  e.  y  ->  suc  A  e.  suc  y )  /\  A  e.  suc  y )  -> 
( ( A  e.  y  \/  A  =  y )  ->  ( suc  A  e.  suc  y  \/  suc  A  =  suc  y ) ) )
2520, 24mpd 13 . . . . . 6  |-  ( ( ( A  e.  y  ->  suc  A  e.  suc  y )  /\  A  e.  suc  y )  -> 
( suc  A  e.  suc  y  \/  suc  A  =  suc  y ) )
26 vex 2763 . . . . . . . 8  |-  y  e. 
_V
2726sucex 4531 . . . . . . 7  |-  suc  y  e.  _V
2827elsuc2 4438 . . . . . 6  |-  ( suc 
A  e.  suc  suc  y 
<->  ( suc  A  e. 
suc  y  \/  suc  A  =  suc  y ) )
2925, 28sylibr 134 . . . . 5  |-  ( ( ( A  e.  y  ->  suc  A  e.  suc  y )  /\  A  e.  suc  y )  ->  suc  A  e.  suc  suc  y )
3029ex 115 . . . 4  |-  ( ( A  e.  y  ->  suc  A  e.  suc  y
)  ->  ( A  e.  suc  y  ->  suc  A  e.  suc  suc  y
) )
3130a1i 9 . . 3  |-  ( y  e.  om  ->  (
( A  e.  y  ->  suc  A  e.  suc  y )  ->  ( A  e.  suc  y  ->  suc  A  e.  suc  suc  y ) ) )
324, 8, 12, 16, 18, 31finds 4632 . 2  |-  ( B  e.  om  ->  ( A  e.  B  ->  suc 
A  e.  suc  B
) )
33 nnon 4642 . . 3  |-  ( B  e.  om  ->  B  e.  On )
34 onsucelsucr 4540 . . 3  |-  ( B  e.  On  ->  ( suc  A  e.  suc  B  ->  A  e.  B ) )
3533, 34syl 14 . 2  |-  ( B  e.  om  ->  ( suc  A  e.  suc  B  ->  A  e.  B ) )
3632, 35impbid 129 1  |-  ( B  e.  om  ->  ( A  e.  B  <->  suc  A  e. 
suc  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164   (/)c0 3446   Oncon0 4394   suc csuc 4396   omcom 4622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-uni 3836  df-int 3871  df-tr 4128  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623
This theorem is referenced by:  nnsucsssuc  6545  nntri3or  6546  nnsucuniel  6548  nnaordi  6561  ennnfonelemhom  12572
  Copyright terms: Public domain W3C validator