Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnsucelsuc | Unicode version |
Description: Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucelsucr 4501, but the forward direction, for all ordinals, implies excluded middle as seen as onsucelsucexmid 4523. (Contributed by Jim Kingdon, 25-Aug-2019.) |
Ref | Expression |
---|---|
nnsucelsuc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2239 | . . . 4 | |
2 | suceq 4396 | . . . . 5 | |
3 | 2 | eleq2d 2245 | . . . 4 |
4 | 1, 3 | imbi12d 234 | . . 3 |
5 | eleq2 2239 | . . . 4 | |
6 | suceq 4396 | . . . . 5 | |
7 | 6 | eleq2d 2245 | . . . 4 |
8 | 5, 7 | imbi12d 234 | . . 3 |
9 | eleq2 2239 | . . . 4 | |
10 | suceq 4396 | . . . . 5 | |
11 | 10 | eleq2d 2245 | . . . 4 |
12 | 9, 11 | imbi12d 234 | . . 3 |
13 | eleq2 2239 | . . . 4 | |
14 | suceq 4396 | . . . . 5 | |
15 | 14 | eleq2d 2245 | . . . 4 |
16 | 13, 15 | imbi12d 234 | . . 3 |
17 | noel 3424 | . . . 4 | |
18 | 17 | pm2.21i 646 | . . 3 |
19 | elsuci 4397 | . . . . . . . 8 | |
20 | 19 | adantl 277 | . . . . . . 7 |
21 | simpl 109 | . . . . . . . 8 | |
22 | suceq 4396 | . . . . . . . . 9 | |
23 | 22 | a1i 9 | . . . . . . . 8 |
24 | 21, 23 | orim12d 786 | . . . . . . 7 |
25 | 20, 24 | mpd 13 | . . . . . 6 |
26 | vex 2738 | . . . . . . . 8 | |
27 | 26 | sucex 4492 | . . . . . . 7 |
28 | 27 | elsuc2 4401 | . . . . . 6 |
29 | 25, 28 | sylibr 134 | . . . . 5 |
30 | 29 | ex 115 | . . . 4 |
31 | 30 | a1i 9 | . . 3 |
32 | 4, 8, 12, 16, 18, 31 | finds 4593 | . 2 |
33 | nnon 4603 | . . 3 | |
34 | onsucelsucr 4501 | . . 3 | |
35 | 33, 34 | syl 14 | . 2 |
36 | 32, 35 | impbid 129 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wo 708 wceq 1353 wcel 2146 c0 3420 con0 4357 csuc 4359 com 4583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-uni 3806 df-int 3841 df-tr 4097 df-iord 4360 df-on 4362 df-suc 4365 df-iom 4584 |
This theorem is referenced by: nnsucsssuc 6483 nntri3or 6484 nnsucuniel 6486 nnaordi 6499 ennnfonelemhom 12383 |
Copyright terms: Public domain | W3C validator |