| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnsucelsuc | Unicode version | ||
| Description: Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucelsucr 4574, but the forward direction, for all ordinals, implies excluded middle as seen as onsucelsucexmid 4596. (Contributed by Jim Kingdon, 25-Aug-2019.) |
| Ref | Expression |
|---|---|
| nnsucelsuc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2271 |
. . . 4
| |
| 2 | suceq 4467 |
. . . . 5
| |
| 3 | 2 | eleq2d 2277 |
. . . 4
|
| 4 | 1, 3 | imbi12d 234 |
. . 3
|
| 5 | eleq2 2271 |
. . . 4
| |
| 6 | suceq 4467 |
. . . . 5
| |
| 7 | 6 | eleq2d 2277 |
. . . 4
|
| 8 | 5, 7 | imbi12d 234 |
. . 3
|
| 9 | eleq2 2271 |
. . . 4
| |
| 10 | suceq 4467 |
. . . . 5
| |
| 11 | 10 | eleq2d 2277 |
. . . 4
|
| 12 | 9, 11 | imbi12d 234 |
. . 3
|
| 13 | eleq2 2271 |
. . . 4
| |
| 14 | suceq 4467 |
. . . . 5
| |
| 15 | 14 | eleq2d 2277 |
. . . 4
|
| 16 | 13, 15 | imbi12d 234 |
. . 3
|
| 17 | noel 3472 |
. . . 4
| |
| 18 | 17 | pm2.21i 647 |
. . 3
|
| 19 | elsuci 4468 |
. . . . . . . 8
| |
| 20 | 19 | adantl 277 |
. . . . . . 7
|
| 21 | simpl 109 |
. . . . . . . 8
| |
| 22 | suceq 4467 |
. . . . . . . . 9
| |
| 23 | 22 | a1i 9 |
. . . . . . . 8
|
| 24 | 21, 23 | orim12d 788 |
. . . . . . 7
|
| 25 | 20, 24 | mpd 13 |
. . . . . 6
|
| 26 | vex 2779 |
. . . . . . . 8
| |
| 27 | 26 | sucex 4565 |
. . . . . . 7
|
| 28 | 27 | elsuc2 4472 |
. . . . . 6
|
| 29 | 25, 28 | sylibr 134 |
. . . . 5
|
| 30 | 29 | ex 115 |
. . . 4
|
| 31 | 30 | a1i 9 |
. . 3
|
| 32 | 4, 8, 12, 16, 18, 31 | finds 4666 |
. 2
|
| 33 | nnon 4676 |
. . 3
| |
| 34 | onsucelsucr 4574 |
. . 3
| |
| 35 | 33, 34 | syl 14 |
. 2
|
| 36 | 32, 35 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-tr 4159 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 |
| This theorem is referenced by: nnsucsssuc 6601 nntri3or 6602 nnsucuniel 6604 nnaordi 6617 ennnfonelemhom 12901 |
| Copyright terms: Public domain | W3C validator |