| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnsucelsuc | Unicode version | ||
| Description: Membership is inherited by successors. The reverse direction holds for all ordinals, as seen at onsucelsucr 4557, but the forward direction, for all ordinals, implies excluded middle as seen as onsucelsucexmid 4579. (Contributed by Jim Kingdon, 25-Aug-2019.) |
| Ref | Expression |
|---|---|
| nnsucelsuc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2269 |
. . . 4
| |
| 2 | suceq 4450 |
. . . . 5
| |
| 3 | 2 | eleq2d 2275 |
. . . 4
|
| 4 | 1, 3 | imbi12d 234 |
. . 3
|
| 5 | eleq2 2269 |
. . . 4
| |
| 6 | suceq 4450 |
. . . . 5
| |
| 7 | 6 | eleq2d 2275 |
. . . 4
|
| 8 | 5, 7 | imbi12d 234 |
. . 3
|
| 9 | eleq2 2269 |
. . . 4
| |
| 10 | suceq 4450 |
. . . . 5
| |
| 11 | 10 | eleq2d 2275 |
. . . 4
|
| 12 | 9, 11 | imbi12d 234 |
. . 3
|
| 13 | eleq2 2269 |
. . . 4
| |
| 14 | suceq 4450 |
. . . . 5
| |
| 15 | 14 | eleq2d 2275 |
. . . 4
|
| 16 | 13, 15 | imbi12d 234 |
. . 3
|
| 17 | noel 3464 |
. . . 4
| |
| 18 | 17 | pm2.21i 647 |
. . 3
|
| 19 | elsuci 4451 |
. . . . . . . 8
| |
| 20 | 19 | adantl 277 |
. . . . . . 7
|
| 21 | simpl 109 |
. . . . . . . 8
| |
| 22 | suceq 4450 |
. . . . . . . . 9
| |
| 23 | 22 | a1i 9 |
. . . . . . . 8
|
| 24 | 21, 23 | orim12d 788 |
. . . . . . 7
|
| 25 | 20, 24 | mpd 13 |
. . . . . 6
|
| 26 | vex 2775 |
. . . . . . . 8
| |
| 27 | 26 | sucex 4548 |
. . . . . . 7
|
| 28 | 27 | elsuc2 4455 |
. . . . . 6
|
| 29 | 25, 28 | sylibr 134 |
. . . . 5
|
| 30 | 29 | ex 115 |
. . . 4
|
| 31 | 30 | a1i 9 |
. . 3
|
| 32 | 4, 8, 12, 16, 18, 31 | finds 4649 |
. 2
|
| 33 | nnon 4659 |
. . 3
| |
| 34 | onsucelsucr 4557 |
. . 3
| |
| 35 | 33, 34 | syl 14 |
. 2
|
| 36 | 32, 35 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-tr 4144 df-iord 4414 df-on 4416 df-suc 4419 df-iom 4640 |
| This theorem is referenced by: nnsucsssuc 6580 nntri3or 6581 nnsucuniel 6583 nnaordi 6596 ennnfonelemhom 12819 |
| Copyright terms: Public domain | W3C validator |