| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elsuci | GIF version | ||
| Description: Membership in a successor. This one-way implication does not require that either 𝐴 or 𝐵 be sets. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| elsuci | ⊢ (𝐴 ∈ suc 𝐵 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc 4406 | . . . 4 ⊢ suc 𝐵 = (𝐵 ∪ {𝐵}) | |
| 2 | 1 | eleq2i 2263 | . . 3 ⊢ (𝐴 ∈ suc 𝐵 ↔ 𝐴 ∈ (𝐵 ∪ {𝐵})) |
| 3 | elun 3304 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∪ {𝐵}) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ {𝐵})) | |
| 4 | 2, 3 | bitri 184 | . 2 ⊢ (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ {𝐵})) |
| 5 | elsni 3640 | . . 3 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
| 6 | 5 | orim2i 762 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 ∈ {𝐵}) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
| 7 | 4, 6 | sylbi 121 | 1 ⊢ (𝐴 ∈ suc 𝐵 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 709 = wceq 1364 ∈ wcel 2167 ∪ cun 3155 {csn 3622 suc csuc 4400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-suc 4406 |
| This theorem is referenced by: trsucss 4458 onsucelsucexmid 4566 ordsoexmid 4598 ordsuc 4599 ordpwsucexmid 4606 nnsucelsuc 6549 nntri3or 6551 nnmordi 6574 nnaordex 6586 phplem3 6915 nninfninc 7189 nnnninf2 7193 3nelsucpw1 7301 3nsssucpw1 7303 |
| Copyright terms: Public domain | W3C validator |