ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsuci GIF version

Theorem elsuci 4493
Description: Membership in a successor. This one-way implication does not require that either 𝐴 or 𝐵 be sets. (Contributed by NM, 6-Jun-1994.)
Assertion
Ref Expression
elsuci (𝐴 ∈ suc 𝐵 → (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem elsuci
StepHypRef Expression
1 df-suc 4461 . . . 4 suc 𝐵 = (𝐵 ∪ {𝐵})
21eleq2i 2296 . . 3 (𝐴 ∈ suc 𝐵𝐴 ∈ (𝐵 ∪ {𝐵}))
3 elun 3345 . . 3 (𝐴 ∈ (𝐵 ∪ {𝐵}) ↔ (𝐴𝐵𝐴 ∈ {𝐵}))
42, 3bitri 184 . 2 (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 ∈ {𝐵}))
5 elsni 3684 . . 3 (𝐴 ∈ {𝐵} → 𝐴 = 𝐵)
65orim2i 766 . 2 ((𝐴𝐵𝐴 ∈ {𝐵}) → (𝐴𝐵𝐴 = 𝐵))
74, 6sylbi 121 1 (𝐴 ∈ suc 𝐵 → (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 713   = wceq 1395  wcel 2200  cun 3195  {csn 3666  suc csuc 4455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-suc 4461
This theorem is referenced by:  trsucss  4513  onsucelsucexmid  4621  ordsoexmid  4653  ordsuc  4654  ordpwsucexmid  4661  nnsucelsuc  6635  nntri3or  6637  nnmordi  6660  nnaordex  6672  phplem3  7011  nninfninc  7286  nnnninf2  7290  3nelsucpw1  7415  3nsssucpw1  7417
  Copyright terms: Public domain W3C validator