Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elsuci | GIF version |
Description: Membership in a successor. This one-way implication does not require that either 𝐴 or 𝐵 be sets. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
elsuci | ⊢ (𝐴 ∈ suc 𝐵 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 4356 | . . . 4 ⊢ suc 𝐵 = (𝐵 ∪ {𝐵}) | |
2 | 1 | eleq2i 2237 | . . 3 ⊢ (𝐴 ∈ suc 𝐵 ↔ 𝐴 ∈ (𝐵 ∪ {𝐵})) |
3 | elun 3268 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∪ {𝐵}) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ {𝐵})) | |
4 | 2, 3 | bitri 183 | . 2 ⊢ (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ {𝐵})) |
5 | elsni 3601 | . . 3 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
6 | 5 | orim2i 756 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∨ 𝐴 ∈ {𝐵}) → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
7 | 4, 6 | sylbi 120 | 1 ⊢ (𝐴 ∈ suc 𝐵 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 703 = wceq 1348 ∈ wcel 2141 ∪ cun 3119 {csn 3583 suc csuc 4350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-suc 4356 |
This theorem is referenced by: trsucss 4408 onsucelsucexmid 4514 ordsoexmid 4546 ordsuc 4547 ordpwsucexmid 4554 nnsucelsuc 6470 nntri3or 6472 nnmordi 6495 nnaordex 6507 phplem3 6832 nnnninf2 7103 3nelsucpw1 7211 3nsssucpw1 7213 |
Copyright terms: Public domain | W3C validator |