ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluniimadm Unicode version

Theorem eluniimadm 5544
Description: Membership in the union of an image of a function. (Contributed by Jim Kingdon, 10-Jan-2019.)
Assertion
Ref Expression
eluniimadm  |-  ( F  Fn  A  ->  ( B  e.  U. ( F " A )  <->  E. x  e.  A  B  e.  ( F `  x ) ) )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem eluniimadm
StepHypRef Expression
1 eliun 3734 . 2  |-  ( B  e.  U_ x  e.  A  ( F `  x )  <->  E. x  e.  A  B  e.  ( F `  x ) )
2 funiunfvdm 5542 . . 3  |-  ( F  Fn  A  ->  U_ x  e.  A  ( F `  x )  =  U. ( F " A ) )
32eleq2d 2157 . 2  |-  ( F  Fn  A  ->  ( B  e.  U_ x  e.  A  ( F `  x )  <->  B  e.  U. ( F " A
) ) )
41, 3syl5rbbr 193 1  |-  ( F  Fn  A  ->  ( B  e.  U. ( F " A )  <->  E. x  e.  A  B  e.  ( F `  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    e. wcel 1438   E.wrex 2360   U.cuni 3653   U_ciun 3730   "cima 4441    Fn wfn 5010   ` cfv 5015
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-sbc 2841  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-fv 5023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator