ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluniimadm GIF version

Theorem eluniimadm 5769
Description: Membership in the union of an image of a function. (Contributed by Jim Kingdon, 10-Jan-2019.)
Assertion
Ref Expression
eluniimadm (𝐹 Fn 𝐴 → (𝐵 (𝐹𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ (𝐹𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem eluniimadm
StepHypRef Expression
1 funiunfvdm 5767 . . 3 (𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = (𝐹𝐴))
21eleq2d 2247 . 2 (𝐹 Fn 𝐴 → (𝐵 𝑥𝐴 (𝐹𝑥) ↔ 𝐵 (𝐹𝐴)))
3 eliun 3892 . 2 (𝐵 𝑥𝐴 (𝐹𝑥) ↔ ∃𝑥𝐴 𝐵 ∈ (𝐹𝑥))
42, 3bitr3di 195 1 (𝐹 Fn 𝐴 → (𝐵 (𝐹𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ (𝐹𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2148  wrex 2456   cuni 3811   ciun 3888  cima 4631   Fn wfn 5213  cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226
This theorem is referenced by:  suplocexprlemell  7715
  Copyright terms: Public domain W3C validator