ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funiunfvdm Unicode version

Theorem funiunfvdm 5810
Description: The indexed union of a function's values is the union of its image under the index class. This theorem is a slight variation of fniunfv 5809. (Contributed by Jim Kingdon, 10-Jan-2019.)
Assertion
Ref Expression
funiunfvdm  |-  ( F  Fn  A  ->  U_ x  e.  A  ( F `  x )  =  U. ( F " A ) )
Distinct variable groups:    x, A    x, F

Proof of Theorem funiunfvdm
StepHypRef Expression
1 fniunfv 5809 . 2  |-  ( F  Fn  A  ->  U_ x  e.  A  ( F `  x )  =  U. ran  F )
2 imadmrn 5019 . . . 4  |-  ( F
" dom  F )  =  ran  F
3 fndm 5357 . . . . 5  |-  ( F  Fn  A  ->  dom  F  =  A )
43imaeq2d 5009 . . . 4  |-  ( F  Fn  A  ->  ( F " dom  F )  =  ( F " A ) )
52, 4eqtr3id 2243 . . 3  |-  ( F  Fn  A  ->  ran  F  =  ( F " A ) )
65unieqd 3850 . 2  |-  ( F  Fn  A  ->  U. ran  F  =  U. ( F
" A ) )
71, 6eqtrd 2229 1  |-  ( F  Fn  A  ->  U_ x  e.  A  ( F `  x )  =  U. ( F " A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   U.cuni 3839   U_ciun 3916   dom cdm 4663   ran crn 4664   "cima 4666    Fn wfn 5253   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266
This theorem is referenced by:  funiunfvdmf  5811  eluniimadm  5812
  Copyright terms: Public domain W3C validator