ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funiunfvdm Unicode version

Theorem funiunfvdm 5807
Description: The indexed union of a function's values is the union of its image under the index class. This theorem is a slight variation of fniunfv 5806. (Contributed by Jim Kingdon, 10-Jan-2019.)
Assertion
Ref Expression
funiunfvdm  |-  ( F  Fn  A  ->  U_ x  e.  A  ( F `  x )  =  U. ( F " A ) )
Distinct variable groups:    x, A    x, F

Proof of Theorem funiunfvdm
StepHypRef Expression
1 fniunfv 5806 . 2  |-  ( F  Fn  A  ->  U_ x  e.  A  ( F `  x )  =  U. ran  F )
2 imadmrn 5016 . . . 4  |-  ( F
" dom  F )  =  ran  F
3 fndm 5354 . . . . 5  |-  ( F  Fn  A  ->  dom  F  =  A )
43imaeq2d 5006 . . . 4  |-  ( F  Fn  A  ->  ( F " dom  F )  =  ( F " A ) )
52, 4eqtr3id 2240 . . 3  |-  ( F  Fn  A  ->  ran  F  =  ( F " A ) )
65unieqd 3847 . 2  |-  ( F  Fn  A  ->  U. ran  F  =  U. ( F
" A ) )
71, 6eqtrd 2226 1  |-  ( F  Fn  A  ->  U_ x  e.  A  ( F `  x )  =  U. ( F " A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   U.cuni 3836   U_ciun 3913   dom cdm 4660   ran crn 4661   "cima 4663    Fn wfn 5250   ` cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263
This theorem is referenced by:  funiunfvdmf  5808  eluniimadm  5809
  Copyright terms: Public domain W3C validator