ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0lenn0nn0 Unicode version

Theorem xnn0lenn0nn0 9678
Description: An extended nonnegative integer which is less than or equal to a nonnegative integer is a nonnegative integer. (Contributed by AV, 24-Nov-2021.)
Assertion
Ref Expression
xnn0lenn0nn0  |-  ( ( M  e. NN0*  /\  N  e.  NN0  /\  M  <_  N )  ->  M  e.  NN0 )

Proof of Theorem xnn0lenn0nn0
StepHypRef Expression
1 elxnn0 9066 . . 3  |-  ( M  e. NN0* 
<->  ( M  e.  NN0  \/  M  = +oo )
)
2 2a1 25 . . . 4  |-  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( M  <_  N  ->  M  e.  NN0 ) ) )
3 breq1 3940 . . . . . . 7  |-  ( M  = +oo  ->  ( M  <_  N  <-> +oo  <_  N
) )
43adantr 274 . . . . . 6  |-  ( ( M  = +oo  /\  N  e.  NN0 )  -> 
( M  <_  N  <-> +oo 
<_  N ) )
5 nn0re 9010 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  N  e.  RR )
65rexrd 7839 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e. 
RR* )
7 xgepnf 9629 . . . . . . . . 9  |-  ( N  e.  RR*  ->  ( +oo  <_  N  <->  N  = +oo ) )
86, 7syl 14 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( +oo  <_  N  <->  N  = +oo ) )
9 pnfnre 7831 . . . . . . . . 9  |- +oo  e/  RR
10 eleq1 2203 . . . . . . . . . . 11  |-  ( N  = +oo  ->  ( N  e.  NN0  <-> +oo  e.  NN0 ) )
11 nn0re 9010 . . . . . . . . . . . 12  |-  ( +oo  e.  NN0  -> +oo  e.  RR )
12 elnelall 2416 . . . . . . . . . . . 12  |-  ( +oo  e.  RR  ->  ( +oo  e/  RR  ->  M  e.  NN0 ) )
1311, 12syl 14 . . . . . . . . . . 11  |-  ( +oo  e.  NN0  ->  ( +oo  e/  RR  ->  M  e.  NN0 ) )
1410, 13syl6bi 162 . . . . . . . . . 10  |-  ( N  = +oo  ->  ( N  e.  NN0  ->  ( +oo  e/  RR  ->  M  e.  NN0 ) ) )
1514com13 80 . . . . . . . . 9  |-  ( +oo  e/  RR  ->  ( N  e.  NN0  ->  ( N  = +oo  ->  M  e.  NN0 ) ) )
169, 15ax-mp 5 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( N  = +oo  ->  M  e.  NN0 ) )
178, 16sylbid 149 . . . . . . 7  |-  ( N  e.  NN0  ->  ( +oo  <_  N  ->  M  e.  NN0 ) )
1817adantl 275 . . . . . 6  |-  ( ( M  = +oo  /\  N  e.  NN0 )  -> 
( +oo  <_  N  ->  M  e.  NN0 ) )
194, 18sylbid 149 . . . . 5  |-  ( ( M  = +oo  /\  N  e.  NN0 )  -> 
( M  <_  N  ->  M  e.  NN0 )
)
2019ex 114 . . . 4  |-  ( M  = +oo  ->  ( N  e.  NN0  ->  ( M  <_  N  ->  M  e.  NN0 ) ) )
212, 20jaoi 706 . . 3  |-  ( ( M  e.  NN0  \/  M  = +oo )  ->  ( N  e.  NN0  ->  ( M  <_  N  ->  M  e.  NN0 )
) )
221, 21sylbi 120 . 2  |-  ( M  e. NN0*  ->  ( N  e. 
NN0  ->  ( M  <_  N  ->  M  e.  NN0 ) ) )
23223imp 1176 1  |-  ( ( M  e. NN0*  /\  N  e.  NN0  /\  M  <_  N )  ->  M  e.  NN0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    /\ w3a 963    = wceq 1332    e. wcel 1481    e/ wnel 2404   class class class wbr 3937   RRcr 7643   +oocpnf 7821   RR*cxr 7823    <_ cle 7825   NN0cn0 9001  NN0*cxnn0 9064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1re 7738  ax-addrcl 7741  ax-rnegex 7753  ax-pre-ltirr 7756
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-xp 4553  df-cnv 4555  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-inn 8745  df-n0 9002  df-xnn0 9065
This theorem is referenced by:  xnn0le2is012  9679
  Copyright terms: Public domain W3C validator