ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0lenn0nn0 Unicode version

Theorem xnn0lenn0nn0 9940
Description: An extended nonnegative integer which is less than or equal to a nonnegative integer is a nonnegative integer. (Contributed by AV, 24-Nov-2021.)
Assertion
Ref Expression
xnn0lenn0nn0  |-  ( ( M  e. NN0*  /\  N  e.  NN0  /\  M  <_  N )  ->  M  e.  NN0 )

Proof of Theorem xnn0lenn0nn0
StepHypRef Expression
1 elxnn0 9314 . . 3  |-  ( M  e. NN0* 
<->  ( M  e.  NN0  \/  M  = +oo )
)
2 2a1 25 . . . 4  |-  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( M  <_  N  ->  M  e.  NN0 ) ) )
3 breq1 4036 . . . . . . 7  |-  ( M  = +oo  ->  ( M  <_  N  <-> +oo  <_  N
) )
43adantr 276 . . . . . 6  |-  ( ( M  = +oo  /\  N  e.  NN0 )  -> 
( M  <_  N  <-> +oo 
<_  N ) )
5 nn0re 9258 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  N  e.  RR )
65rexrd 8076 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e. 
RR* )
7 xgepnf 9891 . . . . . . . . 9  |-  ( N  e.  RR*  ->  ( +oo  <_  N  <->  N  = +oo ) )
86, 7syl 14 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( +oo  <_  N  <->  N  = +oo ) )
9 pnfnre 8068 . . . . . . . . 9  |- +oo  e/  RR
10 eleq1 2259 . . . . . . . . . . 11  |-  ( N  = +oo  ->  ( N  e.  NN0  <-> +oo  e.  NN0 ) )
11 nn0re 9258 . . . . . . . . . . . 12  |-  ( +oo  e.  NN0  -> +oo  e.  RR )
12 elnelall 2474 . . . . . . . . . . . 12  |-  ( +oo  e.  RR  ->  ( +oo  e/  RR  ->  M  e.  NN0 ) )
1311, 12syl 14 . . . . . . . . . . 11  |-  ( +oo  e.  NN0  ->  ( +oo  e/  RR  ->  M  e.  NN0 ) )
1410, 13biimtrdi 163 . . . . . . . . . 10  |-  ( N  = +oo  ->  ( N  e.  NN0  ->  ( +oo  e/  RR  ->  M  e.  NN0 ) ) )
1514com13 80 . . . . . . . . 9  |-  ( +oo  e/  RR  ->  ( N  e.  NN0  ->  ( N  = +oo  ->  M  e.  NN0 ) ) )
169, 15ax-mp 5 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( N  = +oo  ->  M  e.  NN0 ) )
178, 16sylbid 150 . . . . . . 7  |-  ( N  e.  NN0  ->  ( +oo  <_  N  ->  M  e.  NN0 ) )
1817adantl 277 . . . . . 6  |-  ( ( M  = +oo  /\  N  e.  NN0 )  -> 
( +oo  <_  N  ->  M  e.  NN0 ) )
194, 18sylbid 150 . . . . 5  |-  ( ( M  = +oo  /\  N  e.  NN0 )  -> 
( M  <_  N  ->  M  e.  NN0 )
)
2019ex 115 . . . 4  |-  ( M  = +oo  ->  ( N  e.  NN0  ->  ( M  <_  N  ->  M  e.  NN0 ) ) )
212, 20jaoi 717 . . 3  |-  ( ( M  e.  NN0  \/  M  = +oo )  ->  ( N  e.  NN0  ->  ( M  <_  N  ->  M  e.  NN0 )
) )
221, 21sylbi 121 . 2  |-  ( M  e. NN0*  ->  ( N  e. 
NN0  ->  ( M  <_  N  ->  M  e.  NN0 ) ) )
23223imp 1195 1  |-  ( ( M  e. NN0*  /\  N  e.  NN0  /\  M  <_  N )  ->  M  e.  NN0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167    e/ wnel 2462   class class class wbr 4033   RRcr 7878   +oocpnf 8058   RR*cxr 8060    <_ cle 8062   NN0cn0 9249  NN0*cxnn0 9312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976  ax-rnegex 7988  ax-pre-ltirr 7991
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-inn 8991  df-n0 9250  df-xnn0 9313
This theorem is referenced by:  xnn0le2is012  9941
  Copyright terms: Public domain W3C validator