Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xnn0lenn0nn0 | Unicode version |
Description: An extended nonnegative integer which is less than or equal to a nonnegative integer is a nonnegative integer. (Contributed by AV, 24-Nov-2021.) |
Ref | Expression |
---|---|
xnn0lenn0nn0 | NN0* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxnn0 9179 | . . 3 NN0* | |
2 | 2a1 25 | . . . 4 | |
3 | breq1 3985 | . . . . . . 7 | |
4 | 3 | adantr 274 | . . . . . 6 |
5 | nn0re 9123 | . . . . . . . . . 10 | |
6 | 5 | rexrd 7948 | . . . . . . . . 9 |
7 | xgepnf 9752 | . . . . . . . . 9 | |
8 | 6, 7 | syl 14 | . . . . . . . 8 |
9 | pnfnre 7940 | . . . . . . . . 9 | |
10 | eleq1 2229 | . . . . . . . . . . 11 | |
11 | nn0re 9123 | . . . . . . . . . . . 12 | |
12 | elnelall 2443 | . . . . . . . . . . . 12 | |
13 | 11, 12 | syl 14 | . . . . . . . . . . 11 |
14 | 10, 13 | syl6bi 162 | . . . . . . . . . 10 |
15 | 14 | com13 80 | . . . . . . . . 9 |
16 | 9, 15 | ax-mp 5 | . . . . . . . 8 |
17 | 8, 16 | sylbid 149 | . . . . . . 7 |
18 | 17 | adantl 275 | . . . . . 6 |
19 | 4, 18 | sylbid 149 | . . . . 5 |
20 | 19 | ex 114 | . . . 4 |
21 | 2, 20 | jaoi 706 | . . 3 |
22 | 1, 21 | sylbi 120 | . 2 NN0* |
23 | 22 | 3imp 1183 | 1 NN0* |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 w3a 968 wceq 1343 wcel 2136 wnel 2431 class class class wbr 3982 cr 7752 cpnf 7930 cxr 7932 cle 7934 cn0 9114 NN0*cxnn0 9177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-rnegex 7862 ax-pre-ltirr 7865 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-inn 8858 df-n0 9115 df-xnn0 9178 |
This theorem is referenced by: xnn0le2is012 9802 |
Copyright terms: Public domain | W3C validator |