Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xnn0lenn0nn0 | Unicode version |
Description: An extended nonnegative integer which is less than or equal to a nonnegative integer is a nonnegative integer. (Contributed by AV, 24-Nov-2021.) |
Ref | Expression |
---|---|
xnn0lenn0nn0 | NN0* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxnn0 9187 | . . 3 NN0* | |
2 | 2a1 25 | . . . 4 | |
3 | breq1 3990 | . . . . . . 7 | |
4 | 3 | adantr 274 | . . . . . 6 |
5 | nn0re 9131 | . . . . . . . . . 10 | |
6 | 5 | rexrd 7956 | . . . . . . . . 9 |
7 | xgepnf 9760 | . . . . . . . . 9 | |
8 | 6, 7 | syl 14 | . . . . . . . 8 |
9 | pnfnre 7948 | . . . . . . . . 9 | |
10 | eleq1 2233 | . . . . . . . . . . 11 | |
11 | nn0re 9131 | . . . . . . . . . . . 12 | |
12 | elnelall 2447 | . . . . . . . . . . . 12 | |
13 | 11, 12 | syl 14 | . . . . . . . . . . 11 |
14 | 10, 13 | syl6bi 162 | . . . . . . . . . 10 |
15 | 14 | com13 80 | . . . . . . . . 9 |
16 | 9, 15 | ax-mp 5 | . . . . . . . 8 |
17 | 8, 16 | sylbid 149 | . . . . . . 7 |
18 | 17 | adantl 275 | . . . . . 6 |
19 | 4, 18 | sylbid 149 | . . . . 5 |
20 | 19 | ex 114 | . . . 4 |
21 | 2, 20 | jaoi 711 | . . 3 |
22 | 1, 21 | sylbi 120 | . 2 NN0* |
23 | 22 | 3imp 1188 | 1 NN0* |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 703 w3a 973 wceq 1348 wcel 2141 wnel 2435 class class class wbr 3987 cr 7760 cpnf 7938 cxr 7940 cle 7942 cn0 9122 NN0*cxnn0 9185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1re 7855 ax-addrcl 7858 ax-rnegex 7870 ax-pre-ltirr 7873 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-xp 4615 df-cnv 4617 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-inn 8866 df-n0 9123 df-xnn0 9186 |
This theorem is referenced by: xnn0le2is012 9810 |
Copyright terms: Public domain | W3C validator |