ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0lenn0nn0 Unicode version

Theorem xnn0lenn0nn0 9809
Description: An extended nonnegative integer which is less than or equal to a nonnegative integer is a nonnegative integer. (Contributed by AV, 24-Nov-2021.)
Assertion
Ref Expression
xnn0lenn0nn0  |-  ( ( M  e. NN0*  /\  N  e.  NN0  /\  M  <_  N )  ->  M  e.  NN0 )

Proof of Theorem xnn0lenn0nn0
StepHypRef Expression
1 elxnn0 9187 . . 3  |-  ( M  e. NN0* 
<->  ( M  e.  NN0  \/  M  = +oo )
)
2 2a1 25 . . . 4  |-  ( M  e.  NN0  ->  ( N  e.  NN0  ->  ( M  <_  N  ->  M  e.  NN0 ) ) )
3 breq1 3990 . . . . . . 7  |-  ( M  = +oo  ->  ( M  <_  N  <-> +oo  <_  N
) )
43adantr 274 . . . . . 6  |-  ( ( M  = +oo  /\  N  e.  NN0 )  -> 
( M  <_  N  <-> +oo 
<_  N ) )
5 nn0re 9131 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  N  e.  RR )
65rexrd 7956 . . . . . . . . 9  |-  ( N  e.  NN0  ->  N  e. 
RR* )
7 xgepnf 9760 . . . . . . . . 9  |-  ( N  e.  RR*  ->  ( +oo  <_  N  <->  N  = +oo ) )
86, 7syl 14 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( +oo  <_  N  <->  N  = +oo ) )
9 pnfnre 7948 . . . . . . . . 9  |- +oo  e/  RR
10 eleq1 2233 . . . . . . . . . . 11  |-  ( N  = +oo  ->  ( N  e.  NN0  <-> +oo  e.  NN0 ) )
11 nn0re 9131 . . . . . . . . . . . 12  |-  ( +oo  e.  NN0  -> +oo  e.  RR )
12 elnelall 2447 . . . . . . . . . . . 12  |-  ( +oo  e.  RR  ->  ( +oo  e/  RR  ->  M  e.  NN0 ) )
1311, 12syl 14 . . . . . . . . . . 11  |-  ( +oo  e.  NN0  ->  ( +oo  e/  RR  ->  M  e.  NN0 ) )
1410, 13syl6bi 162 . . . . . . . . . 10  |-  ( N  = +oo  ->  ( N  e.  NN0  ->  ( +oo  e/  RR  ->  M  e.  NN0 ) ) )
1514com13 80 . . . . . . . . 9  |-  ( +oo  e/  RR  ->  ( N  e.  NN0  ->  ( N  = +oo  ->  M  e.  NN0 ) ) )
169, 15ax-mp 5 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( N  = +oo  ->  M  e.  NN0 ) )
178, 16sylbid 149 . . . . . . 7  |-  ( N  e.  NN0  ->  ( +oo  <_  N  ->  M  e.  NN0 ) )
1817adantl 275 . . . . . 6  |-  ( ( M  = +oo  /\  N  e.  NN0 )  -> 
( +oo  <_  N  ->  M  e.  NN0 ) )
194, 18sylbid 149 . . . . 5  |-  ( ( M  = +oo  /\  N  e.  NN0 )  -> 
( M  <_  N  ->  M  e.  NN0 )
)
2019ex 114 . . . 4  |-  ( M  = +oo  ->  ( N  e.  NN0  ->  ( M  <_  N  ->  M  e.  NN0 ) ) )
212, 20jaoi 711 . . 3  |-  ( ( M  e.  NN0  \/  M  = +oo )  ->  ( N  e.  NN0  ->  ( M  <_  N  ->  M  e.  NN0 )
) )
221, 21sylbi 120 . 2  |-  ( M  e. NN0*  ->  ( N  e. 
NN0  ->  ( M  <_  N  ->  M  e.  NN0 ) ) )
23223imp 1188 1  |-  ( ( M  e. NN0*  /\  N  e.  NN0  /\  M  <_  N )  ->  M  e.  NN0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    /\ w3a 973    = wceq 1348    e. wcel 2141    e/ wnel 2435   class class class wbr 3987   RRcr 7760   +oocpnf 7938   RR*cxr 7940    <_ cle 7942   NN0cn0 9122  NN0*cxnn0 9185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7852  ax-resscn 7853  ax-1re 7855  ax-addrcl 7858  ax-rnegex 7870  ax-pre-ltirr 7873
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-br 3988  df-opab 4049  df-xp 4615  df-cnv 4617  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-inn 8866  df-n0 9123  df-xnn0 9186
This theorem is referenced by:  xnn0le2is012  9810
  Copyright terms: Public domain W3C validator