ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcmpblnr Unicode version

Theorem mulcmpblnr 7517
Description: Lemma showing compatibility of multiplication. (Contributed by NM, 5-Sep-1995.)
Assertion
Ref Expression
mulcmpblnr  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  +P.  D )  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R
) )  ->  <. (
( A  .P.  F
)  +P.  ( B  .P.  G ) ) ,  ( ( A  .P.  G )  +P.  ( B  .P.  F ) )
>.  ~R  <. ( ( C  .P.  R )  +P.  ( D  .P.  S
) ) ,  ( ( C  .P.  S
)  +P.  ( D  .P.  R ) ) >.
) )

Proof of Theorem mulcmpblnr
StepHypRef Expression
1 mulcmpblnrlemg 7516 . . 3  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  +P.  D )  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R
) )  ->  (
( D  .P.  F
)  +P.  ( (
( A  .P.  F
)  +P.  ( B  .P.  G ) )  +P.  ( ( C  .P.  S )  +P.  ( D  .P.  R ) ) ) )  =  ( ( D  .P.  F
)  +P.  ( (
( A  .P.  G
)  +P.  ( B  .P.  F ) )  +P.  ( ( C  .P.  R )  +P.  ( D  .P.  S ) ) ) ) ) )
2 simplrr 510 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  D  e.  P. )
3 simprll 511 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  F  e.  P. )
4 mulclpr 7348 . . . . 5  |-  ( ( D  e.  P.  /\  F  e.  P. )  ->  ( D  .P.  F
)  e.  P. )
52, 3, 4syl2anc 408 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( D  .P.  F )  e.  P. )
6 simplll 507 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  A  e.  P. )
7 mulclpr 7348 . . . . . . 7  |-  ( ( A  e.  P.  /\  F  e.  P. )  ->  ( A  .P.  F
)  e.  P. )
86, 3, 7syl2anc 408 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( A  .P.  F )  e.  P. )
9 simpllr 508 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  B  e.  P. )
10 simprlr 512 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  G  e.  P. )
11 mulclpr 7348 . . . . . . 7  |-  ( ( B  e.  P.  /\  G  e.  P. )  ->  ( B  .P.  G
)  e.  P. )
129, 10, 11syl2anc 408 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( B  .P.  G )  e.  P. )
13 addclpr 7313 . . . . . 6  |-  ( ( ( A  .P.  F
)  e.  P.  /\  ( B  .P.  G )  e.  P. )  -> 
( ( A  .P.  F )  +P.  ( B  .P.  G ) )  e.  P. )
148, 12, 13syl2anc 408 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( A  .P.  F )  +P.  ( B  .P.  G
) )  e.  P. )
15 simplrl 509 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  C  e.  P. )
16 simprrr 514 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  S  e.  P. )
17 mulclpr 7348 . . . . . . 7  |-  ( ( C  e.  P.  /\  S  e.  P. )  ->  ( C  .P.  S
)  e.  P. )
1815, 16, 17syl2anc 408 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( C  .P.  S )  e.  P. )
19 simprrl 513 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  R  e.  P. )
20 mulclpr 7348 . . . . . . 7  |-  ( ( D  e.  P.  /\  R  e.  P. )  ->  ( D  .P.  R
)  e.  P. )
212, 19, 20syl2anc 408 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( D  .P.  R )  e.  P. )
22 addclpr 7313 . . . . . 6  |-  ( ( ( C  .P.  S
)  e.  P.  /\  ( D  .P.  R )  e.  P. )  -> 
( ( C  .P.  S )  +P.  ( D  .P.  R ) )  e.  P. )
2318, 21, 22syl2anc 408 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( C  .P.  S )  +P.  ( D  .P.  R
) )  e.  P. )
24 addclpr 7313 . . . . 5  |-  ( ( ( ( A  .P.  F )  +P.  ( B  .P.  G ) )  e.  P.  /\  (
( C  .P.  S
)  +P.  ( D  .P.  R ) )  e. 
P. )  ->  (
( ( A  .P.  F )  +P.  ( B  .P.  G ) )  +P.  ( ( C  .P.  S )  +P.  ( D  .P.  R
) ) )  e. 
P. )
2514, 23, 24syl2anc 408 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  .P.  F )  +P.  ( B  .P.  G ) )  +P.  (
( C  .P.  S
)  +P.  ( D  .P.  R ) ) )  e.  P. )
26 mulclpr 7348 . . . . . . 7  |-  ( ( A  e.  P.  /\  G  e.  P. )  ->  ( A  .P.  G
)  e.  P. )
276, 10, 26syl2anc 408 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( A  .P.  G )  e.  P. )
28 mulclpr 7348 . . . . . . 7  |-  ( ( B  e.  P.  /\  F  e.  P. )  ->  ( B  .P.  F
)  e.  P. )
299, 3, 28syl2anc 408 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( B  .P.  F )  e.  P. )
30 addclpr 7313 . . . . . 6  |-  ( ( ( A  .P.  G
)  e.  P.  /\  ( B  .P.  F )  e.  P. )  -> 
( ( A  .P.  G )  +P.  ( B  .P.  F ) )  e.  P. )
3127, 29, 30syl2anc 408 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( A  .P.  G )  +P.  ( B  .P.  F
) )  e.  P. )
32 mulclpr 7348 . . . . . . 7  |-  ( ( C  e.  P.  /\  R  e.  P. )  ->  ( C  .P.  R
)  e.  P. )
3315, 19, 32syl2anc 408 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( C  .P.  R )  e.  P. )
34 mulclpr 7348 . . . . . . 7  |-  ( ( D  e.  P.  /\  S  e.  P. )  ->  ( D  .P.  S
)  e.  P. )
352, 16, 34syl2anc 408 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( D  .P.  S )  e.  P. )
36 addclpr 7313 . . . . . 6  |-  ( ( ( C  .P.  R
)  e.  P.  /\  ( D  .P.  S )  e.  P. )  -> 
( ( C  .P.  R )  +P.  ( D  .P.  S ) )  e.  P. )
3733, 35, 36syl2anc 408 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( C  .P.  R )  +P.  ( D  .P.  S
) )  e.  P. )
38 addclpr 7313 . . . . 5  |-  ( ( ( ( A  .P.  G )  +P.  ( B  .P.  F ) )  e.  P.  /\  (
( C  .P.  R
)  +P.  ( D  .P.  S ) )  e. 
P. )  ->  (
( ( A  .P.  G )  +P.  ( B  .P.  F ) )  +P.  ( ( C  .P.  R )  +P.  ( D  .P.  S
) ) )  e. 
P. )
3931, 37, 38syl2anc 408 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  .P.  G )  +P.  ( B  .P.  F ) )  +P.  (
( C  .P.  R
)  +P.  ( D  .P.  S ) ) )  e.  P. )
40 addcanprg 7392 . . . 4  |-  ( ( ( D  .P.  F
)  e.  P.  /\  ( ( ( A  .P.  F )  +P.  ( B  .P.  G
) )  +P.  (
( C  .P.  S
)  +P.  ( D  .P.  R ) ) )  e.  P.  /\  (
( ( A  .P.  G )  +P.  ( B  .P.  F ) )  +P.  ( ( C  .P.  R )  +P.  ( D  .P.  S
) ) )  e. 
P. )  ->  (
( ( D  .P.  F )  +P.  ( ( ( A  .P.  F
)  +P.  ( B  .P.  G ) )  +P.  ( ( C  .P.  S )  +P.  ( D  .P.  R ) ) ) )  =  ( ( D  .P.  F
)  +P.  ( (
( A  .P.  G
)  +P.  ( B  .P.  F ) )  +P.  ( ( C  .P.  R )  +P.  ( D  .P.  S ) ) ) )  ->  (
( ( A  .P.  F )  +P.  ( B  .P.  G ) )  +P.  ( ( C  .P.  S )  +P.  ( D  .P.  R
) ) )  =  ( ( ( A  .P.  G )  +P.  ( B  .P.  F
) )  +P.  (
( C  .P.  R
)  +P.  ( D  .P.  S ) ) ) ) )
415, 25, 39, 40syl3anc 1201 . . 3  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( D  .P.  F )  +P.  ( ( ( A  .P.  F )  +P.  ( B  .P.  G ) )  +P.  (
( C  .P.  S
)  +P.  ( D  .P.  R ) ) ) )  =  ( ( D  .P.  F )  +P.  ( ( ( A  .P.  G )  +P.  ( B  .P.  F ) )  +P.  (
( C  .P.  R
)  +P.  ( D  .P.  S ) ) ) )  ->  ( (
( A  .P.  F
)  +P.  ( B  .P.  G ) )  +P.  ( ( C  .P.  S )  +P.  ( D  .P.  R ) ) )  =  ( ( ( A  .P.  G
)  +P.  ( B  .P.  F ) )  +P.  ( ( C  .P.  R )  +P.  ( D  .P.  S ) ) ) ) )
421, 41syld 45 . 2  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  +P.  D )  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R
) )  ->  (
( ( A  .P.  F )  +P.  ( B  .P.  G ) )  +P.  ( ( C  .P.  S )  +P.  ( D  .P.  R
) ) )  =  ( ( ( A  .P.  G )  +P.  ( B  .P.  F
) )  +P.  (
( C  .P.  R
)  +P.  ( D  .P.  S ) ) ) ) )
43 enrbreq 7510 . . 3  |-  ( ( ( ( ( A  .P.  F )  +P.  ( B  .P.  G
) )  e.  P.  /\  ( ( A  .P.  G )  +P.  ( B  .P.  F ) )  e.  P. )  /\  ( ( ( C  .P.  R )  +P.  ( D  .P.  S
) )  e.  P.  /\  ( ( C  .P.  S )  +P.  ( D  .P.  R ) )  e.  P. ) )  ->  ( <. (
( A  .P.  F
)  +P.  ( B  .P.  G ) ) ,  ( ( A  .P.  G )  +P.  ( B  .P.  F ) )
>.  ~R  <. ( ( C  .P.  R )  +P.  ( D  .P.  S
) ) ,  ( ( C  .P.  S
)  +P.  ( D  .P.  R ) ) >.  <->  ( ( ( A  .P.  F )  +P.  ( B  .P.  G ) )  +P.  ( ( C  .P.  S )  +P.  ( D  .P.  R
) ) )  =  ( ( ( A  .P.  G )  +P.  ( B  .P.  F
) )  +P.  (
( C  .P.  R
)  +P.  ( D  .P.  S ) ) ) ) )
4414, 31, 37, 23, 43syl22anc 1202 . 2  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( <. (
( A  .P.  F
)  +P.  ( B  .P.  G ) ) ,  ( ( A  .P.  G )  +P.  ( B  .P.  F ) )
>.  ~R  <. ( ( C  .P.  R )  +P.  ( D  .P.  S
) ) ,  ( ( C  .P.  S
)  +P.  ( D  .P.  R ) ) >.  <->  ( ( ( A  .P.  F )  +P.  ( B  .P.  G ) )  +P.  ( ( C  .P.  S )  +P.  ( D  .P.  R
) ) )  =  ( ( ( A  .P.  G )  +P.  ( B  .P.  F
) )  +P.  (
( C  .P.  R
)  +P.  ( D  .P.  S ) ) ) ) )
4542, 44sylibrd 168 1  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  +P.  D )  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R
) )  ->  <. (
( A  .P.  F
)  +P.  ( B  .P.  G ) ) ,  ( ( A  .P.  G )  +P.  ( B  .P.  F ) )
>.  ~R  <. ( ( C  .P.  R )  +P.  ( D  .P.  S
) ) ,  ( ( C  .P.  S
)  +P.  ( D  .P.  R ) ) >.
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1316    e. wcel 1465   <.cop 3500   class class class wbr 3899  (class class class)co 5742   P.cnp 7067    +P. cpp 7069    .P. cmp 7070    ~R cer 7072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-eprel 4181  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-1o 6281  df-2o 6282  df-oadd 6285  df-omul 6286  df-er 6397  df-ec 6399  df-qs 6403  df-ni 7080  df-pli 7081  df-mi 7082  df-lti 7083  df-plpq 7120  df-mpq 7121  df-enq 7123  df-nqqs 7124  df-plqqs 7125  df-mqqs 7126  df-1nqqs 7127  df-rq 7128  df-ltnqqs 7129  df-enq0 7200  df-nq0 7201  df-0nq0 7202  df-plq0 7203  df-mq0 7204  df-inp 7242  df-iplp 7244  df-imp 7245  df-enr 7502
This theorem is referenced by:  mulsrmo  7520
  Copyright terms: Public domain W3C validator