ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcmpblnr Unicode version

Theorem addcmpblnr 7741
Description: Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995.)
Assertion
Ref Expression
addcmpblnr  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  +P.  D )  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R
) )  ->  <. ( A  +P.  F ) ,  ( B  +P.  G
) >.  ~R  <. ( C  +P.  R ) ,  ( D  +P.  S
) >. ) )

Proof of Theorem addcmpblnr
StepHypRef Expression
1 oveq12 5887 . 2  |-  ( ( ( A  +P.  D
)  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R ) )  ->  (
( A  +P.  D
)  +P.  ( F  +P.  S ) )  =  ( ( B  +P.  C )  +P.  ( G  +P.  R ) ) )
2 addclpr 7539 . . . . . . . 8  |-  ( ( A  e.  P.  /\  F  e.  P. )  ->  ( A  +P.  F
)  e.  P. )
3 addclpr 7539 . . . . . . . 8  |-  ( ( B  e.  P.  /\  G  e.  P. )  ->  ( B  +P.  G
)  e.  P. )
42, 3anim12i 338 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  F  e.  P. )  /\  ( B  e.  P.  /\  G  e.  P. )
)  ->  ( ( A  +P.  F )  e. 
P.  /\  ( B  +P.  G )  e.  P. ) )
54an4s 588 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( F  e.  P.  /\  G  e.  P. )
)  ->  ( ( A  +P.  F )  e. 
P.  /\  ( B  +P.  G )  e.  P. ) )
6 addclpr 7539 . . . . . . . 8  |-  ( ( C  e.  P.  /\  R  e.  P. )  ->  ( C  +P.  R
)  e.  P. )
7 addclpr 7539 . . . . . . . 8  |-  ( ( D  e.  P.  /\  S  e.  P. )  ->  ( D  +P.  S
)  e.  P. )
86, 7anim12i 338 . . . . . . 7  |-  ( ( ( C  e.  P.  /\  R  e.  P. )  /\  ( D  e.  P.  /\  S  e.  P. )
)  ->  ( ( C  +P.  R )  e. 
P.  /\  ( D  +P.  S )  e.  P. ) )
98an4s 588 . . . . . 6  |-  ( ( ( C  e.  P.  /\  D  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. )
)  ->  ( ( C  +P.  R )  e. 
P.  /\  ( D  +P.  S )  e.  P. ) )
105, 9anim12i 338 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( F  e.  P.  /\  G  e.  P. ) )  /\  ( ( C  e. 
P.  /\  D  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  +P.  F )  e.  P.  /\  ( B  +P.  G )  e. 
P. )  /\  (
( C  +P.  R
)  e.  P.  /\  ( D  +P.  S )  e.  P. ) ) )
1110an4s 588 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  +P.  F )  e.  P.  /\  ( B  +P.  G )  e. 
P. )  /\  (
( C  +P.  R
)  e.  P.  /\  ( D  +P.  S )  e.  P. ) ) )
12 enrbreq 7736 . . . 4  |-  ( ( ( ( A  +P.  F )  e.  P.  /\  ( B  +P.  G )  e.  P. )  /\  ( ( C  +P.  R )  e.  P.  /\  ( D  +P.  S )  e.  P. ) )  ->  ( <. ( A  +P.  F ) ,  ( B  +P.  G
) >.  ~R  <. ( C  +P.  R ) ,  ( D  +P.  S
) >. 
<->  ( ( A  +P.  F )  +P.  ( D  +P.  S ) )  =  ( ( B  +P.  G )  +P.  ( C  +P.  R
) ) ) )
1311, 12syl 14 . . 3  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( <. ( A  +P.  F ) ,  ( B  +P.  G
) >.  ~R  <. ( C  +P.  R ) ,  ( D  +P.  S
) >. 
<->  ( ( A  +P.  F )  +P.  ( D  +P.  S ) )  =  ( ( B  +P.  G )  +P.  ( C  +P.  R
) ) ) )
14 simprll 537 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  F  e.  P. )
15 simplrr 536 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  D  e.  P. )
16 addcomprg 7580 . . . . . . . . 9  |-  ( ( F  e.  P.  /\  D  e.  P. )  ->  ( F  +P.  D
)  =  ( D  +P.  F ) )
1714, 15, 16syl2anc 411 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( F  +P.  D )  =  ( D  +P.  F ) )
1817oveq1d 5893 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( F  +P.  D )  +P. 
S )  =  ( ( D  +P.  F
)  +P.  S )
)
19 simprrr 540 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  S  e.  P. )
20 addassprg 7581 . . . . . . . 8  |-  ( ( F  e.  P.  /\  D  e.  P.  /\  S  e.  P. )  ->  (
( F  +P.  D
)  +P.  S )  =  ( F  +P.  ( D  +P.  S ) ) )
2114, 15, 19, 20syl3anc 1238 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( F  +P.  D )  +P. 
S )  =  ( F  +P.  ( D  +P.  S ) ) )
22 addassprg 7581 . . . . . . . 8  |-  ( ( D  e.  P.  /\  F  e.  P.  /\  S  e.  P. )  ->  (
( D  +P.  F
)  +P.  S )  =  ( D  +P.  ( F  +P.  S ) ) )
2315, 14, 19, 22syl3anc 1238 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( D  +P.  F )  +P. 
S )  =  ( D  +P.  ( F  +P.  S ) ) )
2418, 21, 233eqtr3d 2218 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( F  +P.  ( D  +P.  S ) )  =  ( D  +P.  ( F  +P.  S ) ) )
2524oveq2d 5894 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( A  +P.  ( F  +P.  ( D  +P.  S ) ) )  =  ( A  +P.  ( D  +P.  ( F  +P.  S ) ) ) )
26 simplll 533 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  A  e.  P. )
2715, 19, 7syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( D  +P.  S )  e.  P. )
28 addassprg 7581 . . . . . 6  |-  ( ( A  e.  P.  /\  F  e.  P.  /\  ( D  +P.  S )  e. 
P. )  ->  (
( A  +P.  F
)  +P.  ( D  +P.  S ) )  =  ( A  +P.  ( F  +P.  ( D  +P.  S ) ) ) )
2926, 14, 27, 28syl3anc 1238 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( A  +P.  F )  +P.  ( D  +P.  S
) )  =  ( A  +P.  ( F  +P.  ( D  +P.  S ) ) ) )
30 addclpr 7539 . . . . . . 7  |-  ( ( F  e.  P.  /\  S  e.  P. )  ->  ( F  +P.  S
)  e.  P. )
3114, 19, 30syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( F  +P.  S )  e.  P. )
32 addassprg 7581 . . . . . 6  |-  ( ( A  e.  P.  /\  D  e.  P.  /\  ( F  +P.  S )  e. 
P. )  ->  (
( A  +P.  D
)  +P.  ( F  +P.  S ) )  =  ( A  +P.  ( D  +P.  ( F  +P.  S ) ) ) )
3326, 15, 31, 32syl3anc 1238 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( A  +P.  D )  +P.  ( F  +P.  S
) )  =  ( A  +P.  ( D  +P.  ( F  +P.  S ) ) ) )
3425, 29, 333eqtr4d 2220 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( A  +P.  F )  +P.  ( D  +P.  S
) )  =  ( ( A  +P.  D
)  +P.  ( F  +P.  S ) ) )
35 simprlr 538 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  G  e.  P. )
36 simplrl 535 . . . . . . . . 9  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  C  e.  P. )
37 addcomprg 7580 . . . . . . . . 9  |-  ( ( G  e.  P.  /\  C  e.  P. )  ->  ( G  +P.  C
)  =  ( C  +P.  G ) )
3835, 36, 37syl2anc 411 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( G  +P.  C )  =  ( C  +P.  G ) )
3938oveq1d 5893 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( G  +P.  C )  +P. 
R )  =  ( ( C  +P.  G
)  +P.  R )
)
40 simprrl 539 . . . . . . . 8  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  R  e.  P. )
41 addassprg 7581 . . . . . . . 8  |-  ( ( G  e.  P.  /\  C  e.  P.  /\  R  e.  P. )  ->  (
( G  +P.  C
)  +P.  R )  =  ( G  +P.  ( C  +P.  R ) ) )
4235, 36, 40, 41syl3anc 1238 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( G  +P.  C )  +P. 
R )  =  ( G  +P.  ( C  +P.  R ) ) )
43 addassprg 7581 . . . . . . . 8  |-  ( ( C  e.  P.  /\  G  e.  P.  /\  R  e.  P. )  ->  (
( C  +P.  G
)  +P.  R )  =  ( C  +P.  ( G  +P.  R ) ) )
4436, 35, 40, 43syl3anc 1238 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( C  +P.  G )  +P. 
R )  =  ( C  +P.  ( G  +P.  R ) ) )
4539, 42, 443eqtr3d 2218 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( G  +P.  ( C  +P.  R ) )  =  ( C  +P.  ( G  +P.  R ) ) )
4645oveq2d 5894 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( B  +P.  ( G  +P.  ( C  +P.  R ) ) )  =  ( B  +P.  ( C  +P.  ( G  +P.  R ) ) ) )
47 simpllr 534 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  B  e.  P. )
4836, 40, 6syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( C  +P.  R )  e.  P. )
49 addassprg 7581 . . . . . 6  |-  ( ( B  e.  P.  /\  G  e.  P.  /\  ( C  +P.  R )  e. 
P. )  ->  (
( B  +P.  G
)  +P.  ( C  +P.  R ) )  =  ( B  +P.  ( G  +P.  ( C  +P.  R ) ) ) )
5047, 35, 48, 49syl3anc 1238 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( B  +P.  G )  +P.  ( C  +P.  R
) )  =  ( B  +P.  ( G  +P.  ( C  +P.  R ) ) ) )
51 addclpr 7539 . . . . . . 7  |-  ( ( G  e.  P.  /\  R  e.  P. )  ->  ( G  +P.  R
)  e.  P. )
5235, 40, 51syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( G  +P.  R )  e.  P. )
53 addassprg 7581 . . . . . 6  |-  ( ( B  e.  P.  /\  C  e.  P.  /\  ( G  +P.  R )  e. 
P. )  ->  (
( B  +P.  C
)  +P.  ( G  +P.  R ) )  =  ( B  +P.  ( C  +P.  ( G  +P.  R ) ) ) )
5447, 36, 52, 53syl3anc 1238 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( B  +P.  C )  +P.  ( G  +P.  R
) )  =  ( B  +P.  ( C  +P.  ( G  +P.  R ) ) ) )
5546, 50, 543eqtr4d 2220 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( B  +P.  G )  +P.  ( C  +P.  R
) )  =  ( ( B  +P.  C
)  +P.  ( G  +P.  R ) ) )
5634, 55eqeq12d 2192 . . 3  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  +P.  F )  +P.  ( D  +P.  S ) )  =  ( ( B  +P.  G
)  +P.  ( C  +P.  R ) )  <->  ( ( A  +P.  D )  +P.  ( F  +P.  S
) )  =  ( ( B  +P.  C
)  +P.  ( G  +P.  R ) ) ) )
5713, 56bitrd 188 . 2  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( <. ( A  +P.  F ) ,  ( B  +P.  G
) >.  ~R  <. ( C  +P.  R ) ,  ( D  +P.  S
) >. 
<->  ( ( A  +P.  D )  +P.  ( F  +P.  S ) )  =  ( ( B  +P.  C )  +P.  ( G  +P.  R
) ) ) )
581, 57imbitrrid 156 1  |-  ( ( ( ( A  e. 
P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  /\  ( ( F  e. 
P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) )  ->  ( ( ( A  +P.  D )  =  ( B  +P.  C )  /\  ( F  +P.  S )  =  ( G  +P.  R
) )  ->  <. ( A  +P.  F ) ,  ( B  +P.  G
) >.  ~R  <. ( C  +P.  R ) ,  ( D  +P.  S
) >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   <.cop 3597   class class class wbr 4005  (class class class)co 5878   P.cnp 7293    +P. cpp 7295    ~R cer 7298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-1o 6420  df-2o 6421  df-oadd 6424  df-omul 6425  df-er 6538  df-ec 6540  df-qs 6544  df-ni 7306  df-pli 7307  df-mi 7308  df-lti 7309  df-plpq 7346  df-mpq 7347  df-enq 7349  df-nqqs 7350  df-plqqs 7351  df-mqqs 7352  df-1nqqs 7353  df-rq 7354  df-ltnqqs 7355  df-enq0 7426  df-nq0 7427  df-0nq0 7428  df-plq0 7429  df-mq0 7430  df-inp 7468  df-iplp 7470  df-enr 7728
This theorem is referenced by:  addsrmo  7745
  Copyright terms: Public domain W3C validator