| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > enrbreq | GIF version | ||
| Description: Equivalence relation for signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) |
| Ref | Expression |
|---|---|
| enrbreq | ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → (〈𝐴, 𝐵〉 ~R 〈𝐶, 𝐷〉 ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-enr 7909 | . 2 ⊢ ~R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} | |
| 2 | 1 | ecopoveq 6775 | 1 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → (〈𝐴, 𝐵〉 ~R 〈𝐶, 𝐷〉 ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 〈cop 3669 class class class wbr 4082 (class class class)co 6000 Pcnp 7474 +P cpp 7476 ~R cer 7479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4724 df-iota 5277 df-fv 5325 df-ov 6003 df-enr 7909 |
| This theorem is referenced by: enreceq 7919 addcmpblnr 7922 mulcmpblnr 7924 |
| Copyright terms: Public domain | W3C validator |