ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  epel Unicode version

Theorem epel 4383
Description: The epsilon relation and the membership relation are the same. (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
epel  |-  ( x  _E  y  <->  x  e.  y )

Proof of Theorem epel
StepHypRef Expression
1 vex 2802 . 2  |-  y  e. 
_V
21epelc 4382 1  |-  ( x  _E  y  <->  x  e.  y )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   class class class wbr 4083    _E cep 4378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-eprel 4380
This theorem is referenced by:  epse  4433  wetrep  4451  ordsoexmid  4654  zfregfr  4666  ordwe  4668  wessep  4670  reg3exmidlemwe  4671  smoiso  6448  nnwetri  7078  ordiso2  7202  frec2uzisod  10629  nnti  16356
  Copyright terms: Public domain W3C validator