ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  epel Unicode version

Theorem epel 4251
Description: The epsilon relation and the membership relation are the same. (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
epel  |-  ( x  _E  y  <->  x  e.  y )

Proof of Theorem epel
StepHypRef Expression
1 vex 2715 . 2  |-  y  e. 
_V
21epelc 4250 1  |-  ( x  _E  y  <->  x  e.  y )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   class class class wbr 3965    _E cep 4246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-eprel 4248
This theorem is referenced by:  epse  4301  wetrep  4319  ordsoexmid  4519  zfregfr  4531  ordwe  4533  wessep  4535  reg3exmidlemwe  4536  smoiso  6243  nnwetri  6853  ordiso2  6969  frec2uzisod  10288  nnti  13526
  Copyright terms: Public domain W3C validator