ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  epel GIF version

Theorem epel 4337
Description: The epsilon relation and the membership relation are the same. (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
epel (𝑥 E 𝑦𝑥𝑦)

Proof of Theorem epel
StepHypRef Expression
1 vex 2774 . 2 𝑦 ∈ V
21epelc 4336 1 (𝑥 E 𝑦𝑥𝑦)
Colors of variables: wff set class
Syntax hints:  wb 105   class class class wbr 4043   E cep 4332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105  df-eprel 4334
This theorem is referenced by:  epse  4387  wetrep  4405  ordsoexmid  4608  zfregfr  4620  ordwe  4622  wessep  4624  reg3exmidlemwe  4625  smoiso  6378  nnwetri  6995  ordiso2  7119  frec2uzisod  10533  nnti  15793
  Copyright terms: Public domain W3C validator