ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  epel GIF version

Theorem epel 4323
Description: The epsilon relation and the membership relation are the same. (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
epel (𝑥 E 𝑦𝑥𝑦)

Proof of Theorem epel
StepHypRef Expression
1 vex 2763 . 2 𝑦 ∈ V
21epelc 4322 1 (𝑥 E 𝑦𝑥𝑦)
Colors of variables: wff set class
Syntax hints:  wb 105   class class class wbr 4029   E cep 4318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-eprel 4320
This theorem is referenced by:  epse  4373  wetrep  4391  ordsoexmid  4594  zfregfr  4606  ordwe  4608  wessep  4610  reg3exmidlemwe  4611  smoiso  6355  nnwetri  6972  ordiso2  7094  frec2uzisod  10478  nnti  15485
  Copyright terms: Public domain W3C validator