ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  epel GIF version

Theorem epel 4328
Description: The epsilon relation and the membership relation are the same. (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
epel (𝑥 E 𝑦𝑥𝑦)

Proof of Theorem epel
StepHypRef Expression
1 vex 2766 . 2 𝑦 ∈ V
21epelc 4327 1 (𝑥 E 𝑦𝑥𝑦)
Colors of variables: wff set class
Syntax hints:  wb 105   class class class wbr 4034   E cep 4323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-opab 4096  df-eprel 4325
This theorem is referenced by:  epse  4378  wetrep  4396  ordsoexmid  4599  zfregfr  4611  ordwe  4613  wessep  4615  reg3exmidlemwe  4616  smoiso  6369  nnwetri  6986  ordiso2  7110  frec2uzisod  10516  nnti  15723
  Copyright terms: Public domain W3C validator