ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqop Unicode version

Theorem eqop 6323
Description: Two ways to express equality with an ordered pair. (Contributed by NM, 3-Sep-2007.) (Proof shortened by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
eqop  |-  ( A  e.  ( V  X.  W )  ->  ( A  =  <. B ,  C >. 
<->  ( ( 1st `  A
)  =  B  /\  ( 2nd `  A )  =  C ) ) )

Proof of Theorem eqop
StepHypRef Expression
1 1st2nd2 6321 . . 3  |-  ( A  e.  ( V  X.  W )  ->  A  =  <. ( 1st `  A
) ,  ( 2nd `  A ) >. )
21eqeq1d 2238 . 2  |-  ( A  e.  ( V  X.  W )  ->  ( A  =  <. B ,  C >. 
<-> 
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. B ,  C >. )
)
3 1stexg 6313 . . 3  |-  ( A  e.  ( V  X.  W )  ->  ( 1st `  A )  e. 
_V )
4 2ndexg 6314 . . 3  |-  ( A  e.  ( V  X.  W )  ->  ( 2nd `  A )  e. 
_V )
5 opthg 4324 . . 3  |-  ( ( ( 1st `  A
)  e.  _V  /\  ( 2nd `  A )  e.  _V )  -> 
( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. B ,  C >.  <->  ( ( 1st `  A )  =  B  /\  ( 2nd `  A )  =  C ) ) )
63, 4, 5syl2anc 411 . 2  |-  ( A  e.  ( V  X.  W )  ->  ( <. ( 1st `  A
) ,  ( 2nd `  A ) >.  =  <. B ,  C >.  <->  ( ( 1st `  A )  =  B  /\  ( 2nd `  A )  =  C ) ) )
72, 6bitrd 188 1  |-  ( A  e.  ( V  X.  W )  ->  ( A  =  <. B ,  C >. 
<->  ( ( 1st `  A
)  =  B  /\  ( 2nd `  A )  =  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799   <.cop 3669    X. cxp 4717   ` cfv 5318   1stc1st 6284   2ndc2nd 6285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fo 5324  df-fv 5326  df-1st 6286  df-2nd 6287
This theorem is referenced by:  eqop2  6324  op1steq  6325  f1od2  6381  txhmeo  14993
  Copyright terms: Public domain W3C validator