ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rereceu Unicode version

Theorem rereceu 7830
Description: The reciprocal from axprecex 7821 is unique. (Contributed by Jim Kingdon, 15-Jul-2021.)
Assertion
Ref Expression
rereceu  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E! x  e.  RR  ( A  x.  x
)  =  1 )
Distinct variable group:    x, A

Proof of Theorem rereceu
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axprecex 7821 . . 3  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) )
2 simpr 109 . . . 4  |-  ( ( 0  <RR  x  /\  ( A  x.  x )  =  1 )  -> 
( A  x.  x
)  =  1 )
32reximi 2563 . . 3  |-  ( E. x  e.  RR  (
0  <RR  x  /\  ( A  x.  x )  =  1 )  ->  E. x  e.  RR  ( A  x.  x
)  =  1 )
41, 3syl 14 . 2  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( A  x.  x
)  =  1 )
5 eqtr3 2185 . . . . 5  |-  ( ( ( A  x.  x
)  =  1  /\  ( A  x.  y
)  =  1 )  ->  ( A  x.  x )  =  ( A  x.  y ) )
6 axprecex 7821 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. z  e.  RR  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) )
76adantr 274 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  E. z  e.  RR  ( 0  <RR  z  /\  ( A  x.  z )  =  1 ) )
8 axresscn 7801 . . . . . . . . . . . . 13  |-  RR  C_  CC
9 simpll 519 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  A  e.  RR )
108, 9sselid 3140 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  A  e.  CC )
11 simprl 521 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  x  e.  RR )
128, 11sselid 3140 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  x  e.  CC )
13 axmulcom 7812 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( A  x.  x
)  =  ( x  x.  A ) )
1410, 12, 13syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( A  x.  x )  =  ( x  x.  A ) )
15 simprr 522 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  y  e.  RR )
168, 15sselid 3140 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  y  e.  CC )
17 axmulcom 7812 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  ( A  x.  y
)  =  ( y  x.  A ) )
1810, 16, 17syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( A  x.  y )  =  ( y  x.  A ) )
1914, 18eqeq12d 2180 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( ( A  x.  x )  =  ( A  x.  y )  <->  ( x  x.  A )  =  ( y  x.  A ) ) )
2019adantr 274 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
( A  x.  x
)  =  ( A  x.  y )  <->  ( x  x.  A )  =  ( y  x.  A ) ) )
21 oveq1 5849 . . . . . . . . 9  |-  ( ( x  x.  A )  =  ( y  x.  A )  ->  (
( x  x.  A
)  x.  z )  =  ( ( y  x.  A )  x.  z ) )
2220, 21syl6bi 162 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
( A  x.  x
)  =  ( A  x.  y )  -> 
( ( x  x.  A )  x.  z
)  =  ( ( y  x.  A )  x.  z ) ) )
2312adantr 274 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  x  e.  CC )
2410adantr 274 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  A  e.  CC )
25 simprl 521 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  z  e.  RR )
268, 25sselid 3140 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  z  e.  CC )
27 axmulass 7814 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  A  e.  CC  /\  z  e.  CC )  ->  (
( x  x.  A
)  x.  z )  =  ( x  x.  ( A  x.  z
) ) )
2823, 24, 26, 27syl3anc 1228 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
( x  x.  A
)  x.  z )  =  ( x  x.  ( A  x.  z
) ) )
2916adantr 274 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  y  e.  CC )
30 axmulass 7814 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  A  e.  CC  /\  z  e.  CC )  ->  (
( y  x.  A
)  x.  z )  =  ( y  x.  ( A  x.  z
) ) )
3129, 24, 26, 30syl3anc 1228 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
( y  x.  A
)  x.  z )  =  ( y  x.  ( A  x.  z
) ) )
3228, 31eqeq12d 2180 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
( ( x  x.  A )  x.  z
)  =  ( ( y  x.  A )  x.  z )  <->  ( x  x.  ( A  x.  z
) )  =  ( y  x.  ( A  x.  z ) ) ) )
3322, 32sylibd 148 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
( A  x.  x
)  =  ( A  x.  y )  -> 
( x  x.  ( A  x.  z )
)  =  ( y  x.  ( A  x.  z ) ) ) )
34 oveq2 5850 . . . . . . . . . 10  |-  ( ( A  x.  z )  =  1  ->  (
x  x.  ( A  x.  z ) )  =  ( x  x.  1 ) )
3534ad2antll 483 . . . . . . . . 9  |-  ( ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) )  ->  ( x  x.  ( A  x.  z
) )  =  ( x  x.  1 ) )
36 ax1rid 7818 . . . . . . . . . 10  |-  ( x  e.  RR  ->  (
x  x.  1 )  =  x )
3711, 36syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( x  x.  1 )  =  x )
3835, 37sylan9eqr 2221 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
x  x.  ( A  x.  z ) )  =  x )
39 oveq2 5850 . . . . . . . . . 10  |-  ( ( A  x.  z )  =  1  ->  (
y  x.  ( A  x.  z ) )  =  ( y  x.  1 ) )
4039ad2antll 483 . . . . . . . . 9  |-  ( ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) )  ->  ( y  x.  ( A  x.  z
) )  =  ( y  x.  1 ) )
41 ax1rid 7818 . . . . . . . . . 10  |-  ( y  e.  RR  ->  (
y  x.  1 )  =  y )
4241ad2antll 483 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( y  x.  1 )  =  y )
4340, 42sylan9eqr 2221 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
y  x.  ( A  x.  z ) )  =  y )
4438, 43eqeq12d 2180 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
( x  x.  ( A  x.  z )
)  =  ( y  x.  ( A  x.  z ) )  <->  x  =  y ) )
4533, 44sylibd 148 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
( A  x.  x
)  =  ( A  x.  y )  ->  x  =  y )
)
467, 45rexlimddv 2588 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( ( A  x.  x )  =  ( A  x.  y )  ->  x  =  y ) )
475, 46syl5 32 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( (
( A  x.  x
)  =  1  /\  ( A  x.  y
)  =  1 )  ->  x  =  y ) )
4847ralrimivva 2548 . . 3  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  A. x  e.  RR  A. y  e.  RR  (
( ( A  x.  x )  =  1  /\  ( A  x.  y )  =  1 )  ->  x  =  y ) )
49 oveq2 5850 . . . . 5  |-  ( x  =  y  ->  ( A  x.  x )  =  ( A  x.  y ) )
5049eqeq1d 2174 . . . 4  |-  ( x  =  y  ->  (
( A  x.  x
)  =  1  <->  ( A  x.  y )  =  1 ) )
5150rmo4 2919 . . 3  |-  ( E* x  e.  RR  ( A  x.  x )  =  1  <->  A. x  e.  RR  A. y  e.  RR  ( ( ( A  x.  x )  =  1  /\  ( A  x.  y )  =  1 )  ->  x  =  y )
)
5248, 51sylibr 133 . 2  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E* x  e.  RR  ( A  x.  x
)  =  1 )
53 reu5 2678 . 2  |-  ( E! x  e.  RR  ( A  x.  x )  =  1  <->  ( E. x  e.  RR  ( A  x.  x )  =  1  /\  E* x  e.  RR  ( A  x.  x )  =  1 ) )
544, 52, 53sylanbrc 414 1  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E! x  e.  RR  ( A  x.  x
)  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445   E!wreu 2446   E*wrmo 2447   class class class wbr 3982  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754    <RR cltrr 7757    x. cmul 7758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-2o 6385  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-enq0 7365  df-nq0 7366  df-0nq0 7367  df-plq0 7368  df-mq0 7369  df-inp 7407  df-i1p 7408  df-iplp 7409  df-imp 7410  df-iltp 7411  df-enr 7667  df-nr 7668  df-plr 7669  df-mr 7670  df-ltr 7671  df-0r 7672  df-1r 7673  df-m1r 7674  df-c 7759  df-0 7760  df-1 7761  df-r 7763  df-mul 7765  df-lt 7766
This theorem is referenced by:  recriota  7831
  Copyright terms: Public domain W3C validator