ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rereceu Unicode version

Theorem rereceu 8004
Description: The reciprocal from axprecex 7995 is unique. (Contributed by Jim Kingdon, 15-Jul-2021.)
Assertion
Ref Expression
rereceu  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E! x  e.  RR  ( A  x.  x
)  =  1 )
Distinct variable group:    x, A

Proof of Theorem rereceu
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axprecex 7995 . . 3  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) )
2 simpr 110 . . . 4  |-  ( ( 0  <RR  x  /\  ( A  x.  x )  =  1 )  -> 
( A  x.  x
)  =  1 )
32reximi 2603 . . 3  |-  ( E. x  e.  RR  (
0  <RR  x  /\  ( A  x.  x )  =  1 )  ->  E. x  e.  RR  ( A  x.  x
)  =  1 )
41, 3syl 14 . 2  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( A  x.  x
)  =  1 )
5 eqtr3 2225 . . . . 5  |-  ( ( ( A  x.  x
)  =  1  /\  ( A  x.  y
)  =  1 )  ->  ( A  x.  x )  =  ( A  x.  y ) )
6 axprecex 7995 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. z  e.  RR  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) )
76adantr 276 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  E. z  e.  RR  ( 0  <RR  z  /\  ( A  x.  z )  =  1 ) )
8 axresscn 7975 . . . . . . . . . . . . 13  |-  RR  C_  CC
9 simpll 527 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  A  e.  RR )
108, 9sselid 3191 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  A  e.  CC )
11 simprl 529 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  x  e.  RR )
128, 11sselid 3191 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  x  e.  CC )
13 axmulcom 7986 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( A  x.  x
)  =  ( x  x.  A ) )
1410, 12, 13syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( A  x.  x )  =  ( x  x.  A ) )
15 simprr 531 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  y  e.  RR )
168, 15sselid 3191 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  y  e.  CC )
17 axmulcom 7986 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  ( A  x.  y
)  =  ( y  x.  A ) )
1810, 16, 17syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( A  x.  y )  =  ( y  x.  A ) )
1914, 18eqeq12d 2220 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( ( A  x.  x )  =  ( A  x.  y )  <->  ( x  x.  A )  =  ( y  x.  A ) ) )
2019adantr 276 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
( A  x.  x
)  =  ( A  x.  y )  <->  ( x  x.  A )  =  ( y  x.  A ) ) )
21 oveq1 5953 . . . . . . . . 9  |-  ( ( x  x.  A )  =  ( y  x.  A )  ->  (
( x  x.  A
)  x.  z )  =  ( ( y  x.  A )  x.  z ) )
2220, 21biimtrdi 163 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
( A  x.  x
)  =  ( A  x.  y )  -> 
( ( x  x.  A )  x.  z
)  =  ( ( y  x.  A )  x.  z ) ) )
2312adantr 276 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  x  e.  CC )
2410adantr 276 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  A  e.  CC )
25 simprl 529 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  z  e.  RR )
268, 25sselid 3191 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  z  e.  CC )
27 axmulass 7988 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  A  e.  CC  /\  z  e.  CC )  ->  (
( x  x.  A
)  x.  z )  =  ( x  x.  ( A  x.  z
) ) )
2823, 24, 26, 27syl3anc 1250 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
( x  x.  A
)  x.  z )  =  ( x  x.  ( A  x.  z
) ) )
2916adantr 276 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  y  e.  CC )
30 axmulass 7988 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  A  e.  CC  /\  z  e.  CC )  ->  (
( y  x.  A
)  x.  z )  =  ( y  x.  ( A  x.  z
) ) )
3129, 24, 26, 30syl3anc 1250 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
( y  x.  A
)  x.  z )  =  ( y  x.  ( A  x.  z
) ) )
3228, 31eqeq12d 2220 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
( ( x  x.  A )  x.  z
)  =  ( ( y  x.  A )  x.  z )  <->  ( x  x.  ( A  x.  z
) )  =  ( y  x.  ( A  x.  z ) ) ) )
3322, 32sylibd 149 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
( A  x.  x
)  =  ( A  x.  y )  -> 
( x  x.  ( A  x.  z )
)  =  ( y  x.  ( A  x.  z ) ) ) )
34 oveq2 5954 . . . . . . . . . 10  |-  ( ( A  x.  z )  =  1  ->  (
x  x.  ( A  x.  z ) )  =  ( x  x.  1 ) )
3534ad2antll 491 . . . . . . . . 9  |-  ( ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) )  ->  ( x  x.  ( A  x.  z
) )  =  ( x  x.  1 ) )
36 ax1rid 7992 . . . . . . . . . 10  |-  ( x  e.  RR  ->  (
x  x.  1 )  =  x )
3711, 36syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( x  x.  1 )  =  x )
3835, 37sylan9eqr 2260 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
x  x.  ( A  x.  z ) )  =  x )
39 oveq2 5954 . . . . . . . . . 10  |-  ( ( A  x.  z )  =  1  ->  (
y  x.  ( A  x.  z ) )  =  ( y  x.  1 ) )
4039ad2antll 491 . . . . . . . . 9  |-  ( ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) )  ->  ( y  x.  ( A  x.  z
) )  =  ( y  x.  1 ) )
41 ax1rid 7992 . . . . . . . . . 10  |-  ( y  e.  RR  ->  (
y  x.  1 )  =  y )
4241ad2antll 491 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( y  x.  1 )  =  y )
4340, 42sylan9eqr 2260 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
y  x.  ( A  x.  z ) )  =  y )
4438, 43eqeq12d 2220 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
( x  x.  ( A  x.  z )
)  =  ( y  x.  ( A  x.  z ) )  <->  x  =  y ) )
4533, 44sylibd 149 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
( A  x.  x
)  =  ( A  x.  y )  ->  x  =  y )
)
467, 45rexlimddv 2628 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( ( A  x.  x )  =  ( A  x.  y )  ->  x  =  y ) )
475, 46syl5 32 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( (
( A  x.  x
)  =  1  /\  ( A  x.  y
)  =  1 )  ->  x  =  y ) )
4847ralrimivva 2588 . . 3  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  A. x  e.  RR  A. y  e.  RR  (
( ( A  x.  x )  =  1  /\  ( A  x.  y )  =  1 )  ->  x  =  y ) )
49 oveq2 5954 . . . . 5  |-  ( x  =  y  ->  ( A  x.  x )  =  ( A  x.  y ) )
5049eqeq1d 2214 . . . 4  |-  ( x  =  y  ->  (
( A  x.  x
)  =  1  <->  ( A  x.  y )  =  1 ) )
5150rmo4 2966 . . 3  |-  ( E* x  e.  RR  ( A  x.  x )  =  1  <->  A. x  e.  RR  A. y  e.  RR  ( ( ( A  x.  x )  =  1  /\  ( A  x.  y )  =  1 )  ->  x  =  y )
)
5248, 51sylibr 134 . 2  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E* x  e.  RR  ( A  x.  x
)  =  1 )
53 reu5 2723 . 2  |-  ( E! x  e.  RR  ( A  x.  x )  =  1  <->  ( E. x  e.  RR  ( A  x.  x )  =  1  /\  E* x  e.  RR  ( A  x.  x )  =  1 ) )
544, 52, 53sylanbrc 417 1  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E! x  e.  RR  ( A  x.  x
)  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   E!wreu 2486   E*wrmo 2487   class class class wbr 4045  (class class class)co 5946   CCcc 7925   RRcr 7926   0cc0 7927   1c1 7928    <RR cltrr 7931    x. cmul 7932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-eprel 4337  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-1o 6504  df-2o 6505  df-oadd 6508  df-omul 6509  df-er 6622  df-ec 6624  df-qs 6628  df-ni 7419  df-pli 7420  df-mi 7421  df-lti 7422  df-plpq 7459  df-mpq 7460  df-enq 7462  df-nqqs 7463  df-plqqs 7464  df-mqqs 7465  df-1nqqs 7466  df-rq 7467  df-ltnqqs 7468  df-enq0 7539  df-nq0 7540  df-0nq0 7541  df-plq0 7542  df-mq0 7543  df-inp 7581  df-i1p 7582  df-iplp 7583  df-imp 7584  df-iltp 7585  df-enr 7841  df-nr 7842  df-plr 7843  df-mr 7844  df-ltr 7845  df-0r 7846  df-1r 7847  df-m1r 7848  df-c 7933  df-0 7934  df-1 7935  df-r 7937  df-mul 7939  df-lt 7940
This theorem is referenced by:  recriota  8005
  Copyright terms: Public domain W3C validator