Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rereceu | Unicode version |
Description: The reciprocal from axprecex 7783 is unique. (Contributed by Jim Kingdon, 15-Jul-2021.) |
Ref | Expression |
---|---|
rereceu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axprecex 7783 | . . 3 | |
2 | simpr 109 | . . . 4 | |
3 | 2 | reximi 2554 | . . 3 |
4 | 1, 3 | syl 14 | . 2 |
5 | eqtr3 2177 | . . . . 5 | |
6 | axprecex 7783 | . . . . . . 7 | |
7 | 6 | adantr 274 | . . . . . 6 |
8 | axresscn 7763 | . . . . . . . . . . . . 13 | |
9 | simpll 519 | . . . . . . . . . . . . 13 | |
10 | 8, 9 | sseldi 3126 | . . . . . . . . . . . 12 |
11 | simprl 521 | . . . . . . . . . . . . 13 | |
12 | 8, 11 | sseldi 3126 | . . . . . . . . . . . 12 |
13 | axmulcom 7774 | . . . . . . . . . . . 12 | |
14 | 10, 12, 13 | syl2anc 409 | . . . . . . . . . . 11 |
15 | simprr 522 | . . . . . . . . . . . . 13 | |
16 | 8, 15 | sseldi 3126 | . . . . . . . . . . . 12 |
17 | axmulcom 7774 | . . . . . . . . . . . 12 | |
18 | 10, 16, 17 | syl2anc 409 | . . . . . . . . . . 11 |
19 | 14, 18 | eqeq12d 2172 | . . . . . . . . . 10 |
20 | 19 | adantr 274 | . . . . . . . . 9 |
21 | oveq1 5825 | . . . . . . . . 9 | |
22 | 20, 21 | syl6bi 162 | . . . . . . . 8 |
23 | 12 | adantr 274 | . . . . . . . . . 10 |
24 | 10 | adantr 274 | . . . . . . . . . 10 |
25 | simprl 521 | . . . . . . . . . . 11 | |
26 | 8, 25 | sseldi 3126 | . . . . . . . . . 10 |
27 | axmulass 7776 | . . . . . . . . . 10 | |
28 | 23, 24, 26, 27 | syl3anc 1220 | . . . . . . . . 9 |
29 | 16 | adantr 274 | . . . . . . . . . 10 |
30 | axmulass 7776 | . . . . . . . . . 10 | |
31 | 29, 24, 26, 30 | syl3anc 1220 | . . . . . . . . 9 |
32 | 28, 31 | eqeq12d 2172 | . . . . . . . 8 |
33 | 22, 32 | sylibd 148 | . . . . . . 7 |
34 | oveq2 5826 | . . . . . . . . . 10 | |
35 | 34 | ad2antll 483 | . . . . . . . . 9 |
36 | ax1rid 7780 | . . . . . . . . . 10 | |
37 | 11, 36 | syl 14 | . . . . . . . . 9 |
38 | 35, 37 | sylan9eqr 2212 | . . . . . . . 8 |
39 | oveq2 5826 | . . . . . . . . . 10 | |
40 | 39 | ad2antll 483 | . . . . . . . . 9 |
41 | ax1rid 7780 | . . . . . . . . . 10 | |
42 | 41 | ad2antll 483 | . . . . . . . . 9 |
43 | 40, 42 | sylan9eqr 2212 | . . . . . . . 8 |
44 | 38, 43 | eqeq12d 2172 | . . . . . . 7 |
45 | 33, 44 | sylibd 148 | . . . . . 6 |
46 | 7, 45 | rexlimddv 2579 | . . . . 5 |
47 | 5, 46 | syl5 32 | . . . 4 |
48 | 47 | ralrimivva 2539 | . . 3 |
49 | oveq2 5826 | . . . . 5 | |
50 | 49 | eqeq1d 2166 | . . . 4 |
51 | 50 | rmo4 2905 | . . 3 |
52 | 48, 51 | sylibr 133 | . 2 |
53 | reu5 2669 | . 2 | |
54 | 4, 52, 53 | sylanbrc 414 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 wral 2435 wrex 2436 wreu 2437 wrmo 2438 class class class wbr 3965 (class class class)co 5818 cc 7713 cr 7714 cc0 7715 c1 7716 cltrr 7719 cmul 7720 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-eprel 4248 df-id 4252 df-po 4255 df-iso 4256 df-iord 4325 df-on 4327 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-recs 6246 df-irdg 6311 df-1o 6357 df-2o 6358 df-oadd 6361 df-omul 6362 df-er 6473 df-ec 6475 df-qs 6479 df-ni 7207 df-pli 7208 df-mi 7209 df-lti 7210 df-plpq 7247 df-mpq 7248 df-enq 7250 df-nqqs 7251 df-plqqs 7252 df-mqqs 7253 df-1nqqs 7254 df-rq 7255 df-ltnqqs 7256 df-enq0 7327 df-nq0 7328 df-0nq0 7329 df-plq0 7330 df-mq0 7331 df-inp 7369 df-i1p 7370 df-iplp 7371 df-imp 7372 df-iltp 7373 df-enr 7629 df-nr 7630 df-plr 7631 df-mr 7632 df-ltr 7633 df-0r 7634 df-1r 7635 df-m1r 7636 df-c 7721 df-0 7722 df-1 7723 df-r 7725 df-mul 7727 df-lt 7728 |
This theorem is referenced by: recriota 7793 |
Copyright terms: Public domain | W3C validator |