| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rereceu | Unicode version | ||
| Description: The reciprocal from axprecex 8028 is unique. (Contributed by Jim Kingdon, 15-Jul-2021.) |
| Ref | Expression |
|---|---|
| rereceu |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axprecex 8028 |
. . 3
| |
| 2 | simpr 110 |
. . . 4
| |
| 3 | 2 | reximi 2605 |
. . 3
|
| 4 | 1, 3 | syl 14 |
. 2
|
| 5 | eqtr3 2227 |
. . . . 5
| |
| 6 | axprecex 8028 |
. . . . . . 7
| |
| 7 | 6 | adantr 276 |
. . . . . 6
|
| 8 | axresscn 8008 |
. . . . . . . . . . . . 13
| |
| 9 | simpll 527 |
. . . . . . . . . . . . 13
| |
| 10 | 8, 9 | sselid 3199 |
. . . . . . . . . . . 12
|
| 11 | simprl 529 |
. . . . . . . . . . . . 13
| |
| 12 | 8, 11 | sselid 3199 |
. . . . . . . . . . . 12
|
| 13 | axmulcom 8019 |
. . . . . . . . . . . 12
| |
| 14 | 10, 12, 13 | syl2anc 411 |
. . . . . . . . . . 11
|
| 15 | simprr 531 |
. . . . . . . . . . . . 13
| |
| 16 | 8, 15 | sselid 3199 |
. . . . . . . . . . . 12
|
| 17 | axmulcom 8019 |
. . . . . . . . . . . 12
| |
| 18 | 10, 16, 17 | syl2anc 411 |
. . . . . . . . . . 11
|
| 19 | 14, 18 | eqeq12d 2222 |
. . . . . . . . . 10
|
| 20 | 19 | adantr 276 |
. . . . . . . . 9
|
| 21 | oveq1 5974 |
. . . . . . . . 9
| |
| 22 | 20, 21 | biimtrdi 163 |
. . . . . . . 8
|
| 23 | 12 | adantr 276 |
. . . . . . . . . 10
|
| 24 | 10 | adantr 276 |
. . . . . . . . . 10
|
| 25 | simprl 529 |
. . . . . . . . . . 11
| |
| 26 | 8, 25 | sselid 3199 |
. . . . . . . . . 10
|
| 27 | axmulass 8021 |
. . . . . . . . . 10
| |
| 28 | 23, 24, 26, 27 | syl3anc 1250 |
. . . . . . . . 9
|
| 29 | 16 | adantr 276 |
. . . . . . . . . 10
|
| 30 | axmulass 8021 |
. . . . . . . . . 10
| |
| 31 | 29, 24, 26, 30 | syl3anc 1250 |
. . . . . . . . 9
|
| 32 | 28, 31 | eqeq12d 2222 |
. . . . . . . 8
|
| 33 | 22, 32 | sylibd 149 |
. . . . . . 7
|
| 34 | oveq2 5975 |
. . . . . . . . . 10
| |
| 35 | 34 | ad2antll 491 |
. . . . . . . . 9
|
| 36 | ax1rid 8025 |
. . . . . . . . . 10
| |
| 37 | 11, 36 | syl 14 |
. . . . . . . . 9
|
| 38 | 35, 37 | sylan9eqr 2262 |
. . . . . . . 8
|
| 39 | oveq2 5975 |
. . . . . . . . . 10
| |
| 40 | 39 | ad2antll 491 |
. . . . . . . . 9
|
| 41 | ax1rid 8025 |
. . . . . . . . . 10
| |
| 42 | 41 | ad2antll 491 |
. . . . . . . . 9
|
| 43 | 40, 42 | sylan9eqr 2262 |
. . . . . . . 8
|
| 44 | 38, 43 | eqeq12d 2222 |
. . . . . . 7
|
| 45 | 33, 44 | sylibd 149 |
. . . . . 6
|
| 46 | 7, 45 | rexlimddv 2630 |
. . . . 5
|
| 47 | 5, 46 | syl5 32 |
. . . 4
|
| 48 | 47 | ralrimivva 2590 |
. . 3
|
| 49 | oveq2 5975 |
. . . . 5
| |
| 50 | 49 | eqeq1d 2216 |
. . . 4
|
| 51 | 50 | rmo4 2973 |
. . 3
|
| 52 | 48, 51 | sylibr 134 |
. 2
|
| 53 | reu5 2726 |
. 2
| |
| 54 | 4, 52, 53 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-eprel 4354 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-1o 6525 df-2o 6526 df-oadd 6529 df-omul 6530 df-er 6643 df-ec 6645 df-qs 6649 df-ni 7452 df-pli 7453 df-mi 7454 df-lti 7455 df-plpq 7492 df-mpq 7493 df-enq 7495 df-nqqs 7496 df-plqqs 7497 df-mqqs 7498 df-1nqqs 7499 df-rq 7500 df-ltnqqs 7501 df-enq0 7572 df-nq0 7573 df-0nq0 7574 df-plq0 7575 df-mq0 7576 df-inp 7614 df-i1p 7615 df-iplp 7616 df-imp 7617 df-iltp 7618 df-enr 7874 df-nr 7875 df-plr 7876 df-mr 7877 df-ltr 7878 df-0r 7879 df-1r 7880 df-m1r 7881 df-c 7966 df-0 7967 df-1 7968 df-r 7970 df-mul 7972 df-lt 7973 |
| This theorem is referenced by: recriota 8038 |
| Copyright terms: Public domain | W3C validator |