ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rereceu Unicode version

Theorem rereceu 7951
Description: The reciprocal from axprecex 7942 is unique. (Contributed by Jim Kingdon, 15-Jul-2021.)
Assertion
Ref Expression
rereceu  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E! x  e.  RR  ( A  x.  x
)  =  1 )
Distinct variable group:    x, A

Proof of Theorem rereceu
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axprecex 7942 . . 3  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( 0  <RR  x  /\  ( A  x.  x
)  =  1 ) )
2 simpr 110 . . . 4  |-  ( ( 0  <RR  x  /\  ( A  x.  x )  =  1 )  -> 
( A  x.  x
)  =  1 )
32reximi 2591 . . 3  |-  ( E. x  e.  RR  (
0  <RR  x  /\  ( A  x.  x )  =  1 )  ->  E. x  e.  RR  ( A  x.  x
)  =  1 )
41, 3syl 14 . 2  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. x  e.  RR  ( A  x.  x
)  =  1 )
5 eqtr3 2213 . . . . 5  |-  ( ( ( A  x.  x
)  =  1  /\  ( A  x.  y
)  =  1 )  ->  ( A  x.  x )  =  ( A  x.  y ) )
6 axprecex 7942 . . . . . . 7  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E. z  e.  RR  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) )
76adantr 276 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  E. z  e.  RR  ( 0  <RR  z  /\  ( A  x.  z )  =  1 ) )
8 axresscn 7922 . . . . . . . . . . . . 13  |-  RR  C_  CC
9 simpll 527 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  A  e.  RR )
108, 9sselid 3178 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  A  e.  CC )
11 simprl 529 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  x  e.  RR )
128, 11sselid 3178 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  x  e.  CC )
13 axmulcom 7933 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( A  x.  x
)  =  ( x  x.  A ) )
1410, 12, 13syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( A  x.  x )  =  ( x  x.  A ) )
15 simprr 531 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  y  e.  RR )
168, 15sselid 3178 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  y  e.  CC )
17 axmulcom 7933 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  ( A  x.  y
)  =  ( y  x.  A ) )
1810, 16, 17syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( A  x.  y )  =  ( y  x.  A ) )
1914, 18eqeq12d 2208 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( ( A  x.  x )  =  ( A  x.  y )  <->  ( x  x.  A )  =  ( y  x.  A ) ) )
2019adantr 276 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
( A  x.  x
)  =  ( A  x.  y )  <->  ( x  x.  A )  =  ( y  x.  A ) ) )
21 oveq1 5926 . . . . . . . . 9  |-  ( ( x  x.  A )  =  ( y  x.  A )  ->  (
( x  x.  A
)  x.  z )  =  ( ( y  x.  A )  x.  z ) )
2220, 21biimtrdi 163 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
( A  x.  x
)  =  ( A  x.  y )  -> 
( ( x  x.  A )  x.  z
)  =  ( ( y  x.  A )  x.  z ) ) )
2312adantr 276 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  x  e.  CC )
2410adantr 276 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  A  e.  CC )
25 simprl 529 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  z  e.  RR )
268, 25sselid 3178 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  z  e.  CC )
27 axmulass 7935 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  A  e.  CC  /\  z  e.  CC )  ->  (
( x  x.  A
)  x.  z )  =  ( x  x.  ( A  x.  z
) ) )
2823, 24, 26, 27syl3anc 1249 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
( x  x.  A
)  x.  z )  =  ( x  x.  ( A  x.  z
) ) )
2916adantr 276 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  y  e.  CC )
30 axmulass 7935 . . . . . . . . . 10  |-  ( ( y  e.  CC  /\  A  e.  CC  /\  z  e.  CC )  ->  (
( y  x.  A
)  x.  z )  =  ( y  x.  ( A  x.  z
) ) )
3129, 24, 26, 30syl3anc 1249 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
( y  x.  A
)  x.  z )  =  ( y  x.  ( A  x.  z
) ) )
3228, 31eqeq12d 2208 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
( ( x  x.  A )  x.  z
)  =  ( ( y  x.  A )  x.  z )  <->  ( x  x.  ( A  x.  z
) )  =  ( y  x.  ( A  x.  z ) ) ) )
3322, 32sylibd 149 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
( A  x.  x
)  =  ( A  x.  y )  -> 
( x  x.  ( A  x.  z )
)  =  ( y  x.  ( A  x.  z ) ) ) )
34 oveq2 5927 . . . . . . . . . 10  |-  ( ( A  x.  z )  =  1  ->  (
x  x.  ( A  x.  z ) )  =  ( x  x.  1 ) )
3534ad2antll 491 . . . . . . . . 9  |-  ( ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) )  ->  ( x  x.  ( A  x.  z
) )  =  ( x  x.  1 ) )
36 ax1rid 7939 . . . . . . . . . 10  |-  ( x  e.  RR  ->  (
x  x.  1 )  =  x )
3711, 36syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( x  x.  1 )  =  x )
3835, 37sylan9eqr 2248 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
x  x.  ( A  x.  z ) )  =  x )
39 oveq2 5927 . . . . . . . . . 10  |-  ( ( A  x.  z )  =  1  ->  (
y  x.  ( A  x.  z ) )  =  ( y  x.  1 ) )
4039ad2antll 491 . . . . . . . . 9  |-  ( ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) )  ->  ( y  x.  ( A  x.  z
) )  =  ( y  x.  1 ) )
41 ax1rid 7939 . . . . . . . . . 10  |-  ( y  e.  RR  ->  (
y  x.  1 )  =  y )
4241ad2antll 491 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( y  x.  1 )  =  y )
4340, 42sylan9eqr 2248 . . . . . . . 8  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
y  x.  ( A  x.  z ) )  =  y )
4438, 43eqeq12d 2208 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
( x  x.  ( A  x.  z )
)  =  ( y  x.  ( A  x.  z ) )  <->  x  =  y ) )
4533, 44sylibd 149 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  /\  ( z  e.  RR  /\  ( 0  <RR  z  /\  ( A  x.  z
)  =  1 ) ) )  ->  (
( A  x.  x
)  =  ( A  x.  y )  ->  x  =  y )
)
467, 45rexlimddv 2616 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( ( A  x.  x )  =  ( A  x.  y )  ->  x  =  y ) )
475, 46syl5 32 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <RR  A )  /\  ( x  e.  RR  /\  y  e.  RR ) )  ->  ( (
( A  x.  x
)  =  1  /\  ( A  x.  y
)  =  1 )  ->  x  =  y ) )
4847ralrimivva 2576 . . 3  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  A. x  e.  RR  A. y  e.  RR  (
( ( A  x.  x )  =  1  /\  ( A  x.  y )  =  1 )  ->  x  =  y ) )
49 oveq2 5927 . . . . 5  |-  ( x  =  y  ->  ( A  x.  x )  =  ( A  x.  y ) )
5049eqeq1d 2202 . . . 4  |-  ( x  =  y  ->  (
( A  x.  x
)  =  1  <->  ( A  x.  y )  =  1 ) )
5150rmo4 2954 . . 3  |-  ( E* x  e.  RR  ( A  x.  x )  =  1  <->  A. x  e.  RR  A. y  e.  RR  ( ( ( A  x.  x )  =  1  /\  ( A  x.  y )  =  1 )  ->  x  =  y )
)
5248, 51sylibr 134 . 2  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E* x  e.  RR  ( A  x.  x
)  =  1 )
53 reu5 2711 . 2  |-  ( E! x  e.  RR  ( A  x.  x )  =  1  <->  ( E. x  e.  RR  ( A  x.  x )  =  1  /\  E* x  e.  RR  ( A  x.  x )  =  1 ) )
544, 52, 53sylanbrc 417 1  |-  ( ( A  e.  RR  /\  0  <RR  A )  ->  E! x  e.  RR  ( A  x.  x
)  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   E!wreu 2474   E*wrmo 2475   class class class wbr 4030  (class class class)co 5919   CCcc 7872   RRcr 7873   0cc0 7874   1c1 7875    <RR cltrr 7878    x. cmul 7879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-i1p 7529  df-iplp 7530  df-imp 7531  df-iltp 7532  df-enr 7788  df-nr 7789  df-plr 7790  df-mr 7791  df-ltr 7792  df-0r 7793  df-1r 7794  df-m1r 7795  df-c 7880  df-0 7881  df-1 7882  df-r 7884  df-mul 7886  df-lt 7887
This theorem is referenced by:  recriota  7952
  Copyright terms: Public domain W3C validator