ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lteupri Unicode version

Theorem lteupri 7732
Description: The difference from ltexpri 7728 is unique. (Contributed by Jim Kingdon, 7-Jul-2021.)
Assertion
Ref Expression
lteupri  |-  ( A 
<P  B  ->  E! x  e.  P.  ( A  +P.  x )  =  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem lteupri
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ltexpri 7728 . 2  |-  ( A 
<P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
2 ltrelpr 7620 . . . . 5  |-  <P  C_  ( P.  X.  P. )
32brel 4728 . . . 4  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
43simpld 112 . . 3  |-  ( A 
<P  B  ->  A  e. 
P. )
5 eqtr3 2225 . . . . . . . 8  |-  ( ( ( A  +P.  x
)  =  B  /\  ( A  +P.  y )  =  B )  -> 
( A  +P.  x
)  =  ( A  +P.  y ) )
6 addcanprg 7731 . . . . . . . 8  |-  ( ( A  e.  P.  /\  x  e.  P.  /\  y  e.  P. )  ->  (
( A  +P.  x
)  =  ( A  +P.  y )  ->  x  =  y )
)
75, 6syl5 32 . . . . . . 7  |-  ( ( A  e.  P.  /\  x  e.  P.  /\  y  e.  P. )  ->  (
( ( A  +P.  x )  =  B  /\  ( A  +P.  y )  =  B )  ->  x  =  y ) )
873expa 1206 . . . . . 6  |-  ( ( ( A  e.  P.  /\  x  e.  P. )  /\  y  e.  P. )  ->  ( ( ( A  +P.  x )  =  B  /\  ( A  +P.  y )  =  B )  ->  x  =  y ) )
98ralrimiva 2579 . . . . 5  |-  ( ( A  e.  P.  /\  x  e.  P. )  ->  A. y  e.  P.  ( ( ( A  +P.  x )  =  B  /\  ( A  +P.  y )  =  B )  ->  x  =  y ) )
109ralrimiva 2579 . . . 4  |-  ( A  e.  P.  ->  A. x  e.  P.  A. y  e. 
P.  ( ( ( A  +P.  x )  =  B  /\  ( A  +P.  y )  =  B )  ->  x  =  y ) )
11 oveq2 5954 . . . . . 6  |-  ( x  =  y  ->  ( A  +P.  x )  =  ( A  +P.  y
) )
1211eqeq1d 2214 . . . . 5  |-  ( x  =  y  ->  (
( A  +P.  x
)  =  B  <->  ( A  +P.  y )  =  B ) )
1312rmo4 2966 . . . 4  |-  ( E* x  e.  P.  ( A  +P.  x )  =  B  <->  A. x  e.  P.  A. y  e.  P.  (
( ( A  +P.  x )  =  B  /\  ( A  +P.  y )  =  B )  ->  x  =  y ) )
1410, 13sylibr 134 . . 3  |-  ( A  e.  P.  ->  E* x  e.  P.  ( A  +P.  x )  =  B )
154, 14syl 14 . 2  |-  ( A 
<P  B  ->  E* x  e.  P.  ( A  +P.  x )  =  B )
16 reu5 2723 . 2  |-  ( E! x  e.  P.  ( A  +P.  x )  =  B  <->  ( E. x  e.  P.  ( A  +P.  x )  =  B  /\  E* x  e. 
P.  ( A  +P.  x )  =  B ) )
171, 15, 16sylanbrc 417 1  |-  ( A 
<P  B  ->  E! x  e.  P.  ( A  +P.  x )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   E!wreu 2486   E*wrmo 2487   class class class wbr 4045  (class class class)co 5946   P.cnp 7406    +P. cpp 7408    <P cltp 7410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-eprel 4337  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-1o 6504  df-2o 6505  df-oadd 6508  df-omul 6509  df-er 6622  df-ec 6624  df-qs 6628  df-ni 7419  df-pli 7420  df-mi 7421  df-lti 7422  df-plpq 7459  df-mpq 7460  df-enq 7462  df-nqqs 7463  df-plqqs 7464  df-mqqs 7465  df-1nqqs 7466  df-rq 7467  df-ltnqqs 7468  df-enq0 7539  df-nq0 7540  df-0nq0 7541  df-plq0 7542  df-mq0 7543  df-inp 7581  df-iplp 7583  df-iltp 7585
This theorem is referenced by:  srpospr  7898
  Copyright terms: Public domain W3C validator