ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lteupri Unicode version

Theorem lteupri 7730
Description: The difference from ltexpri 7726 is unique. (Contributed by Jim Kingdon, 7-Jul-2021.)
Assertion
Ref Expression
lteupri  |-  ( A 
<P  B  ->  E! x  e.  P.  ( A  +P.  x )  =  B )
Distinct variable groups:    x, A    x, B

Proof of Theorem lteupri
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ltexpri 7726 . 2  |-  ( A 
<P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
2 ltrelpr 7618 . . . . 5  |-  <P  C_  ( P.  X.  P. )
32brel 4727 . . . 4  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
43simpld 112 . . 3  |-  ( A 
<P  B  ->  A  e. 
P. )
5 eqtr3 2225 . . . . . . . 8  |-  ( ( ( A  +P.  x
)  =  B  /\  ( A  +P.  y )  =  B )  -> 
( A  +P.  x
)  =  ( A  +P.  y ) )
6 addcanprg 7729 . . . . . . . 8  |-  ( ( A  e.  P.  /\  x  e.  P.  /\  y  e.  P. )  ->  (
( A  +P.  x
)  =  ( A  +P.  y )  ->  x  =  y )
)
75, 6syl5 32 . . . . . . 7  |-  ( ( A  e.  P.  /\  x  e.  P.  /\  y  e.  P. )  ->  (
( ( A  +P.  x )  =  B  /\  ( A  +P.  y )  =  B )  ->  x  =  y ) )
873expa 1206 . . . . . 6  |-  ( ( ( A  e.  P.  /\  x  e.  P. )  /\  y  e.  P. )  ->  ( ( ( A  +P.  x )  =  B  /\  ( A  +P.  y )  =  B )  ->  x  =  y ) )
98ralrimiva 2579 . . . . 5  |-  ( ( A  e.  P.  /\  x  e.  P. )  ->  A. y  e.  P.  ( ( ( A  +P.  x )  =  B  /\  ( A  +P.  y )  =  B )  ->  x  =  y ) )
109ralrimiva 2579 . . . 4  |-  ( A  e.  P.  ->  A. x  e.  P.  A. y  e. 
P.  ( ( ( A  +P.  x )  =  B  /\  ( A  +P.  y )  =  B )  ->  x  =  y ) )
11 oveq2 5952 . . . . . 6  |-  ( x  =  y  ->  ( A  +P.  x )  =  ( A  +P.  y
) )
1211eqeq1d 2214 . . . . 5  |-  ( x  =  y  ->  (
( A  +P.  x
)  =  B  <->  ( A  +P.  y )  =  B ) )
1312rmo4 2966 . . . 4  |-  ( E* x  e.  P.  ( A  +P.  x )  =  B  <->  A. x  e.  P.  A. y  e.  P.  (
( ( A  +P.  x )  =  B  /\  ( A  +P.  y )  =  B )  ->  x  =  y ) )
1410, 13sylibr 134 . . 3  |-  ( A  e.  P.  ->  E* x  e.  P.  ( A  +P.  x )  =  B )
154, 14syl 14 . 2  |-  ( A 
<P  B  ->  E* x  e.  P.  ( A  +P.  x )  =  B )
16 reu5 2723 . 2  |-  ( E! x  e.  P.  ( A  +P.  x )  =  B  <->  ( E. x  e.  P.  ( A  +P.  x )  =  B  /\  E* x  e. 
P.  ( A  +P.  x )  =  B ) )
171, 15, 16sylanbrc 417 1  |-  ( A 
<P  B  ->  E! x  e.  P.  ( A  +P.  x )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   E!wreu 2486   E*wrmo 2487   class class class wbr 4044  (class class class)co 5944   P.cnp 7404    +P. cpp 7406    <P cltp 7408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-2o 6503  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-pli 7418  df-mi 7419  df-lti 7420  df-plpq 7457  df-mpq 7458  df-enq 7460  df-nqqs 7461  df-plqqs 7462  df-mqqs 7463  df-1nqqs 7464  df-rq 7465  df-ltnqqs 7466  df-enq0 7537  df-nq0 7538  df-0nq0 7539  df-plq0 7540  df-mq0 7541  df-inp 7579  df-iplp 7581  df-iltp 7583
This theorem is referenced by:  srpospr  7896
  Copyright terms: Public domain W3C validator