ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ercpbllemg Unicode version

Theorem ercpbllemg 13358
Description: Lemma for ercpbl 13359. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r  |-  ( ph  ->  .~  Er  V )
ercpbl.v  |-  ( ph  ->  V  e.  W )
ercpbl.f  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
ercpbllem.1  |-  ( ph  ->  A  e.  V )
ercpbllem.b  |-  ( ph  ->  B  e.  V )
Assertion
Ref Expression
ercpbllemg  |-  ( ph  ->  ( ( F `  A )  =  ( F `  B )  <-> 
A  .~  B )
)
Distinct variable groups:    x,  .~    x, A   
x, B    x, V    ph, x
Allowed substitution hints:    F( x)    W( x)

Proof of Theorem ercpbllemg
StepHypRef Expression
1 ercpbl.r . . . 4  |-  ( ph  ->  .~  Er  V )
2 ercpbl.v . . . 4  |-  ( ph  ->  V  e.  W )
3 ercpbl.f . . . 4  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
4 ercpbllem.1 . . . 4  |-  ( ph  ->  A  e.  V )
51, 2, 3, 4divsfvalg 13357 . . 3  |-  ( ph  ->  ( F `  A
)  =  [ A ]  .~  )
6 ercpbllem.b . . . 4  |-  ( ph  ->  B  e.  V )
71, 2, 3, 6divsfvalg 13357 . . 3  |-  ( ph  ->  ( F `  B
)  =  [ B ]  .~  )
85, 7eqeq12d 2244 . 2  |-  ( ph  ->  ( ( F `  A )  =  ( F `  B )  <->  [ A ]  .~  =  [ B ]  .~  )
)
91, 4erth 6724 . 2  |-  ( ph  ->  ( A  .~  B  <->  [ A ]  .~  =  [ B ]  .~  )
)
108, 9bitr4d 191 1  |-  ( ph  ->  ( ( F `  A )  =  ( F `  B )  <-> 
A  .~  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200   class class class wbr 4082    |-> cmpt 4144   ` cfv 5317    Er wer 6675   [cec 6676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fv 5325  df-er 6678  df-ec 6680
This theorem is referenced by:  ercpbl  13359  erlecpbl  13360
  Copyright terms: Public domain W3C validator