ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ercpbllemg Unicode version

Theorem ercpbllemg 13277
Description: Lemma for ercpbl 13278. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r  |-  ( ph  ->  .~  Er  V )
ercpbl.v  |-  ( ph  ->  V  e.  W )
ercpbl.f  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
ercpbllem.1  |-  ( ph  ->  A  e.  V )
ercpbllem.b  |-  ( ph  ->  B  e.  V )
Assertion
Ref Expression
ercpbllemg  |-  ( ph  ->  ( ( F `  A )  =  ( F `  B )  <-> 
A  .~  B )
)
Distinct variable groups:    x,  .~    x, A   
x, B    x, V    ph, x
Allowed substitution hints:    F( x)    W( x)

Proof of Theorem ercpbllemg
StepHypRef Expression
1 ercpbl.r . . . 4  |-  ( ph  ->  .~  Er  V )
2 ercpbl.v . . . 4  |-  ( ph  ->  V  e.  W )
3 ercpbl.f . . . 4  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
4 ercpbllem.1 . . . 4  |-  ( ph  ->  A  e.  V )
51, 2, 3, 4divsfvalg 13276 . . 3  |-  ( ph  ->  ( F `  A
)  =  [ A ]  .~  )
6 ercpbllem.b . . . 4  |-  ( ph  ->  B  e.  V )
71, 2, 3, 6divsfvalg 13276 . . 3  |-  ( ph  ->  ( F `  B
)  =  [ B ]  .~  )
85, 7eqeq12d 2222 . 2  |-  ( ph  ->  ( ( F `  A )  =  ( F `  B )  <->  [ A ]  .~  =  [ B ]  .~  )
)
91, 4erth 6689 . 2  |-  ( ph  ->  ( A  .~  B  <->  [ A ]  .~  =  [ B ]  .~  )
)
108, 9bitr4d 191 1  |-  ( ph  ->  ( ( F `  A )  =  ( F `  B )  <-> 
A  .~  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2178   class class class wbr 4059    |-> cmpt 4121   ` cfv 5290    Er wer 6640   [cec 6641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fv 5298  df-er 6643  df-ec 6645
This theorem is referenced by:  ercpbl  13278  erlecpbl  13279
  Copyright terms: Public domain W3C validator