ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ercpbllemg Unicode version

Theorem ercpbllemg 12973
Description: Lemma for ercpbl 12974. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r  |-  ( ph  ->  .~  Er  V )
ercpbl.v  |-  ( ph  ->  V  e.  W )
ercpbl.f  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
ercpbllem.1  |-  ( ph  ->  A  e.  V )
ercpbllem.b  |-  ( ph  ->  B  e.  V )
Assertion
Ref Expression
ercpbllemg  |-  ( ph  ->  ( ( F `  A )  =  ( F `  B )  <-> 
A  .~  B )
)
Distinct variable groups:    x,  .~    x, A   
x, B    x, V    ph, x
Allowed substitution hints:    F( x)    W( x)

Proof of Theorem ercpbllemg
StepHypRef Expression
1 ercpbl.r . . . 4  |-  ( ph  ->  .~  Er  V )
2 ercpbl.v . . . 4  |-  ( ph  ->  V  e.  W )
3 ercpbl.f . . . 4  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
4 ercpbllem.1 . . . 4  |-  ( ph  ->  A  e.  V )
51, 2, 3, 4divsfvalg 12972 . . 3  |-  ( ph  ->  ( F `  A
)  =  [ A ]  .~  )
6 ercpbllem.b . . . 4  |-  ( ph  ->  B  e.  V )
71, 2, 3, 6divsfvalg 12972 . . 3  |-  ( ph  ->  ( F `  B
)  =  [ B ]  .~  )
85, 7eqeq12d 2211 . 2  |-  ( ph  ->  ( ( F `  A )  =  ( F `  B )  <->  [ A ]  .~  =  [ B ]  .~  )
)
91, 4erth 6638 . 2  |-  ( ph  ->  ( A  .~  B  <->  [ A ]  .~  =  [ B ]  .~  )
)
108, 9bitr4d 191 1  |-  ( ph  ->  ( ( F `  A )  =  ( F `  B )  <-> 
A  .~  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4033    |-> cmpt 4094   ` cfv 5258    Er wer 6589   [cec 6590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fv 5266  df-er 6592  df-ec 6594
This theorem is referenced by:  ercpbl  12974  erlecpbl  12975
  Copyright terms: Public domain W3C validator