ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ercpbllemg Unicode version

Theorem ercpbllemg 12749
Description: Lemma for ercpbl 12750. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r  |-  ( ph  ->  .~  Er  V )
ercpbl.v  |-  ( ph  ->  V  e.  W )
ercpbl.f  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
ercpbllem.1  |-  ( ph  ->  A  e.  V )
ercpbllem.b  |-  ( ph  ->  B  e.  V )
Assertion
Ref Expression
ercpbllemg  |-  ( ph  ->  ( ( F `  A )  =  ( F `  B )  <-> 
A  .~  B )
)
Distinct variable groups:    x,  .~    x, A   
x, B    x, V    ph, x
Allowed substitution hints:    F( x)    W( x)

Proof of Theorem ercpbllemg
StepHypRef Expression
1 ercpbl.r . . . 4  |-  ( ph  ->  .~  Er  V )
2 ercpbl.v . . . 4  |-  ( ph  ->  V  e.  W )
3 ercpbl.f . . . 4  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
4 ercpbllem.1 . . . 4  |-  ( ph  ->  A  e.  V )
51, 2, 3, 4divsfvalg 12748 . . 3  |-  ( ph  ->  ( F `  A
)  =  [ A ]  .~  )
6 ercpbllem.b . . . 4  |-  ( ph  ->  B  e.  V )
71, 2, 3, 6divsfvalg 12748 . . 3  |-  ( ph  ->  ( F `  B
)  =  [ B ]  .~  )
85, 7eqeq12d 2192 . 2  |-  ( ph  ->  ( ( F `  A )  =  ( F `  B )  <->  [ A ]  .~  =  [ B ]  .~  )
)
91, 4erth 6579 . 2  |-  ( ph  ->  ( A  .~  B  <->  [ A ]  .~  =  [ B ]  .~  )
)
108, 9bitr4d 191 1  |-  ( ph  ->  ( ( F `  A )  =  ( F `  B )  <-> 
A  .~  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353    e. wcel 2148   class class class wbr 4004    |-> cmpt 4065   ` cfv 5217    Er wer 6532   [cec 6533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-csb 3059  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fv 5225  df-er 6535  df-ec 6537
This theorem is referenced by:  ercpbl  12750  erlecpbl  12751
  Copyright terms: Public domain W3C validator