ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ercpbllemg GIF version

Theorem ercpbllemg 12767
Description: Lemma for ercpbl 12768. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r (𝜑 Er 𝑉)
ercpbl.v (𝜑𝑉𝑊)
ercpbl.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
ercpbllem.1 (𝜑𝐴𝑉)
ercpbllem.b (𝜑𝐵𝑉)
Assertion
Ref Expression
ercpbllemg (𝜑 → ((𝐹𝐴) = (𝐹𝐵) ↔ 𝐴 𝐵))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝑊(𝑥)

Proof of Theorem ercpbllemg
StepHypRef Expression
1 ercpbl.r . . . 4 (𝜑 Er 𝑉)
2 ercpbl.v . . . 4 (𝜑𝑉𝑊)
3 ercpbl.f . . . 4 𝐹 = (𝑥𝑉 ↦ [𝑥] )
4 ercpbllem.1 . . . 4 (𝜑𝐴𝑉)
51, 2, 3, 4divsfvalg 12766 . . 3 (𝜑 → (𝐹𝐴) = [𝐴] )
6 ercpbllem.b . . . 4 (𝜑𝐵𝑉)
71, 2, 3, 6divsfvalg 12766 . . 3 (𝜑 → (𝐹𝐵) = [𝐵] )
85, 7eqeq12d 2202 . 2 (𝜑 → ((𝐹𝐴) = (𝐹𝐵) ↔ [𝐴] = [𝐵] ))
91, 4erth 6592 . 2 (𝜑 → (𝐴 𝐵 ↔ [𝐴] = [𝐵] ))
108, 9bitr4d 191 1 (𝜑 → ((𝐹𝐴) = (𝐹𝐵) ↔ 𝐴 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1363  wcel 2158   class class class wbr 4015  cmpt 4076  cfv 5228   Er wer 6545  [cec 6546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fv 5236  df-er 6548  df-ec 6550
This theorem is referenced by:  ercpbl  12768  erlecpbl  12769
  Copyright terms: Public domain W3C validator