ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ercpbllemg GIF version

Theorem ercpbllemg 12749
Description: Lemma for ercpbl 12750. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r (𝜑 Er 𝑉)
ercpbl.v (𝜑𝑉𝑊)
ercpbl.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
ercpbllem.1 (𝜑𝐴𝑉)
ercpbllem.b (𝜑𝐵𝑉)
Assertion
Ref Expression
ercpbllemg (𝜑 → ((𝐹𝐴) = (𝐹𝐵) ↔ 𝐴 𝐵))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝑊(𝑥)

Proof of Theorem ercpbllemg
StepHypRef Expression
1 ercpbl.r . . . 4 (𝜑 Er 𝑉)
2 ercpbl.v . . . 4 (𝜑𝑉𝑊)
3 ercpbl.f . . . 4 𝐹 = (𝑥𝑉 ↦ [𝑥] )
4 ercpbllem.1 . . . 4 (𝜑𝐴𝑉)
51, 2, 3, 4divsfvalg 12748 . . 3 (𝜑 → (𝐹𝐴) = [𝐴] )
6 ercpbllem.b . . . 4 (𝜑𝐵𝑉)
71, 2, 3, 6divsfvalg 12748 . . 3 (𝜑 → (𝐹𝐵) = [𝐵] )
85, 7eqeq12d 2192 . 2 (𝜑 → ((𝐹𝐴) = (𝐹𝐵) ↔ [𝐴] = [𝐵] ))
91, 4erth 6579 . 2 (𝜑 → (𝐴 𝐵 ↔ [𝐴] = [𝐵] ))
108, 9bitr4d 191 1 (𝜑 → ((𝐹𝐴) = (𝐹𝐵) ↔ 𝐴 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1353  wcel 2148   class class class wbr 4004  cmpt 4065  cfv 5217   Er wer 6532  [cec 6533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-sbc 2964  df-csb 3059  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fv 5225  df-er 6535  df-ec 6537
This theorem is referenced by:  ercpbl  12750  erlecpbl  12751
  Copyright terms: Public domain W3C validator