ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ercpbllemg GIF version

Theorem ercpbllemg 13371
Description: Lemma for ercpbl 13372. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r (𝜑 Er 𝑉)
ercpbl.v (𝜑𝑉𝑊)
ercpbl.f 𝐹 = (𝑥𝑉 ↦ [𝑥] )
ercpbllem.1 (𝜑𝐴𝑉)
ercpbllem.b (𝜑𝐵𝑉)
Assertion
Ref Expression
ercpbllemg (𝜑 → ((𝐹𝐴) = (𝐹𝐵) ↔ 𝐴 𝐵))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝑊(𝑥)

Proof of Theorem ercpbllemg
StepHypRef Expression
1 ercpbl.r . . . 4 (𝜑 Er 𝑉)
2 ercpbl.v . . . 4 (𝜑𝑉𝑊)
3 ercpbl.f . . . 4 𝐹 = (𝑥𝑉 ↦ [𝑥] )
4 ercpbllem.1 . . . 4 (𝜑𝐴𝑉)
51, 2, 3, 4divsfvalg 13370 . . 3 (𝜑 → (𝐹𝐴) = [𝐴] )
6 ercpbllem.b . . . 4 (𝜑𝐵𝑉)
71, 2, 3, 6divsfvalg 13370 . . 3 (𝜑 → (𝐹𝐵) = [𝐵] )
85, 7eqeq12d 2244 . 2 (𝜑 → ((𝐹𝐴) = (𝐹𝐵) ↔ [𝐴] = [𝐵] ))
91, 4erth 6734 . 2 (𝜑 → (𝐴 𝐵 ↔ [𝐴] = [𝐵] ))
108, 9bitr4d 191 1 (𝜑 → ((𝐹𝐴) = (𝐹𝐵) ↔ 𝐴 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wcel 2200   class class class wbr 4083  cmpt 4145  cfv 5318   Er wer 6685  [cec 6686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fv 5326  df-er 6688  df-ec 6690
This theorem is referenced by:  ercpbl  13372  erlecpbl  13373
  Copyright terms: Public domain W3C validator