![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ercpbllemg | GIF version |
Description: Lemma for ercpbl 12917. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by AV, 12-Jul-2024.) |
Ref | Expression |
---|---|
ercpbl.r | ⊢ (𝜑 → ∼ Er 𝑉) |
ercpbl.v | ⊢ (𝜑 → 𝑉 ∈ 𝑊) |
ercpbl.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
ercpbllem.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ercpbllem.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
ercpbllemg | ⊢ (𝜑 → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ 𝐴 ∼ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ercpbl.r | . . . 4 ⊢ (𝜑 → ∼ Er 𝑉) | |
2 | ercpbl.v | . . . 4 ⊢ (𝜑 → 𝑉 ∈ 𝑊) | |
3 | ercpbl.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
4 | ercpbllem.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
5 | 1, 2, 3, 4 | divsfvalg 12915 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) = [𝐴] ∼ ) |
6 | ercpbllem.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
7 | 1, 2, 3, 6 | divsfvalg 12915 | . . 3 ⊢ (𝜑 → (𝐹‘𝐵) = [𝐵] ∼ ) |
8 | 5, 7 | eqeq12d 2208 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ [𝐴] ∼ = [𝐵] ∼ )) |
9 | 1, 4 | erth 6635 | . 2 ⊢ (𝜑 → (𝐴 ∼ 𝐵 ↔ [𝐴] ∼ = [𝐵] ∼ )) |
10 | 8, 9 | bitr4d 191 | 1 ⊢ (𝜑 → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ 𝐴 ∼ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 class class class wbr 4030 ↦ cmpt 4091 ‘cfv 5255 Er wer 6586 [cec 6587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-csb 3082 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fv 5263 df-er 6589 df-ec 6591 |
This theorem is referenced by: ercpbl 12917 erlecpbl 12918 |
Copyright terms: Public domain | W3C validator |