| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ercpbllemg | GIF version | ||
| Description: Lemma for ercpbl 13330. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by AV, 12-Jul-2024.) |
| Ref | Expression |
|---|---|
| ercpbl.r | ⊢ (𝜑 → ∼ Er 𝑉) |
| ercpbl.v | ⊢ (𝜑 → 𝑉 ∈ 𝑊) |
| ercpbl.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
| ercpbllem.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ercpbllem.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| ercpbllemg | ⊢ (𝜑 → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ 𝐴 ∼ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ercpbl.r | . . . 4 ⊢ (𝜑 → ∼ Er 𝑉) | |
| 2 | ercpbl.v | . . . 4 ⊢ (𝜑 → 𝑉 ∈ 𝑊) | |
| 3 | ercpbl.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
| 4 | ercpbllem.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | 1, 2, 3, 4 | divsfvalg 13328 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) = [𝐴] ∼ ) |
| 6 | ercpbllem.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 7 | 1, 2, 3, 6 | divsfvalg 13328 | . . 3 ⊢ (𝜑 → (𝐹‘𝐵) = [𝐵] ∼ ) |
| 8 | 5, 7 | eqeq12d 2224 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ [𝐴] ∼ = [𝐵] ∼ )) |
| 9 | 1, 4 | erth 6696 | . 2 ⊢ (𝜑 → (𝐴 ∼ 𝐵 ↔ [𝐴] ∼ = [𝐵] ∼ )) |
| 10 | 8, 9 | bitr4d 191 | 1 ⊢ (𝜑 → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ 𝐴 ∼ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1375 ∈ wcel 2180 class class class wbr 4062 ↦ cmpt 4124 ‘cfv 5294 Er wer 6647 [cec 6648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-csb 3105 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fv 5302 df-er 6650 df-ec 6652 |
| This theorem is referenced by: ercpbl 13330 erlecpbl 13331 |
| Copyright terms: Public domain | W3C validator |