| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ercpbllemg | GIF version | ||
| Description: Lemma for ercpbl 13207. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by AV, 12-Jul-2024.) |
| Ref | Expression |
|---|---|
| ercpbl.r | ⊢ (𝜑 → ∼ Er 𝑉) |
| ercpbl.v | ⊢ (𝜑 → 𝑉 ∈ 𝑊) |
| ercpbl.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) |
| ercpbllem.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ercpbllem.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| ercpbllemg | ⊢ (𝜑 → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ 𝐴 ∼ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ercpbl.r | . . . 4 ⊢ (𝜑 → ∼ Er 𝑉) | |
| 2 | ercpbl.v | . . . 4 ⊢ (𝜑 → 𝑉 ∈ 𝑊) | |
| 3 | ercpbl.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
| 4 | ercpbllem.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | 1, 2, 3, 4 | divsfvalg 13205 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) = [𝐴] ∼ ) |
| 6 | ercpbllem.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 7 | 1, 2, 3, 6 | divsfvalg 13205 | . . 3 ⊢ (𝜑 → (𝐹‘𝐵) = [𝐵] ∼ ) |
| 8 | 5, 7 | eqeq12d 2221 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ [𝐴] ∼ = [𝐵] ∼ )) |
| 9 | 1, 4 | erth 6673 | . 2 ⊢ (𝜑 → (𝐴 ∼ 𝐵 ↔ [𝐴] ∼ = [𝐵] ∼ )) |
| 10 | 8, 9 | bitr4d 191 | 1 ⊢ (𝜑 → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ 𝐴 ∼ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 class class class wbr 4047 ↦ cmpt 4109 ‘cfv 5276 Er wer 6624 [cec 6625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fv 5284 df-er 6627 df-ec 6629 |
| This theorem is referenced by: ercpbl 13207 erlecpbl 13208 |
| Copyright terms: Public domain | W3C validator |