| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ercpbllemg | GIF version | ||
| Description: Lemma for ercpbl 12974. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by AV, 12-Jul-2024.) | 
| Ref | Expression | 
|---|---|
| ercpbl.r | ⊢ (𝜑 → ∼ Er 𝑉) | 
| ercpbl.v | ⊢ (𝜑 → 𝑉 ∈ 𝑊) | 
| ercpbl.f | ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | 
| ercpbllem.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| ercpbllem.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) | 
| Ref | Expression | 
|---|---|
| ercpbllemg | ⊢ (𝜑 → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ 𝐴 ∼ 𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ercpbl.r | . . . 4 ⊢ (𝜑 → ∼ Er 𝑉) | |
| 2 | ercpbl.v | . . . 4 ⊢ (𝜑 → 𝑉 ∈ 𝑊) | |
| 3 | ercpbl.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝑉 ↦ [𝑥] ∼ ) | |
| 4 | ercpbllem.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 5 | 1, 2, 3, 4 | divsfvalg 12972 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) = [𝐴] ∼ ) | 
| 6 | ercpbllem.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 7 | 1, 2, 3, 6 | divsfvalg 12972 | . . 3 ⊢ (𝜑 → (𝐹‘𝐵) = [𝐵] ∼ ) | 
| 8 | 5, 7 | eqeq12d 2211 | . 2 ⊢ (𝜑 → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ [𝐴] ∼ = [𝐵] ∼ )) | 
| 9 | 1, 4 | erth 6638 | . 2 ⊢ (𝜑 → (𝐴 ∼ 𝐵 ↔ [𝐴] ∼ = [𝐵] ∼ )) | 
| 10 | 8, 9 | bitr4d 191 | 1 ⊢ (𝜑 → ((𝐹‘𝐴) = (𝐹‘𝐵) ↔ 𝐴 ∼ 𝐵)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 class class class wbr 4033 ↦ cmpt 4094 ‘cfv 5258 Er wer 6589 [cec 6590 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fv 5266 df-er 6592 df-ec 6594 | 
| This theorem is referenced by: ercpbl 12974 erlecpbl 12975 | 
| Copyright terms: Public domain | W3C validator |