| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ercpbl | Unicode version | ||
| Description: Translate the function compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.) |
| Ref | Expression |
|---|---|
| ercpbl.r |
|
| ercpbl.v |
|
| ercpbl.f |
|
| ercpbl.c |
|
| ercpbl.e |
|
| Ref | Expression |
|---|---|
| ercpbl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ercpbl.e |
. . 3
| |
| 2 | 1 | 3ad2ant1 1042 |
. 2
|
| 3 | ercpbl.r |
. . . . 5
| |
| 4 | 3 | 3ad2ant1 1042 |
. . . 4
|
| 5 | ercpbl.v |
. . . . 5
| |
| 6 | 5 | 3ad2ant1 1042 |
. . . 4
|
| 7 | ercpbl.f |
. . . 4
| |
| 8 | simp2l 1047 |
. . . 4
| |
| 9 | simp3l 1049 |
. . . 4
| |
| 10 | 4, 6, 7, 8, 9 | ercpbllemg 13358 |
. . 3
|
| 11 | simp2r 1048 |
. . . 4
| |
| 12 | simp3r 1050 |
. . . 4
| |
| 13 | 4, 6, 7, 11, 12 | ercpbllemg 13358 |
. . 3
|
| 14 | 10, 13 | anbi12d 473 |
. 2
|
| 15 | ercpbl.c |
. . . . 5
| |
| 16 | 15 | caovclg 6157 |
. . . 4
|
| 17 | 16 | 3adant3 1041 |
. . 3
|
| 18 | simprl 529 |
. . . . 5
| |
| 19 | simprr 531 |
. . . . 5
| |
| 20 | 15 | ralrimivva 2612 |
. . . . . . 7
|
| 21 | oveq1 6007 |
. . . . . . . . 9
| |
| 22 | 21 | eleq1d 2298 |
. . . . . . . 8
|
| 23 | oveq2 6008 |
. . . . . . . . 9
| |
| 24 | 23 | eleq1d 2298 |
. . . . . . . 8
|
| 25 | 22, 24 | cbvral2v 2778 |
. . . . . . 7
|
| 26 | 20, 25 | sylib 122 |
. . . . . 6
|
| 27 | 26 | adantr 276 |
. . . . 5
|
| 28 | ovrspc2v 6026 |
. . . . 5
| |
| 29 | 18, 19, 27, 28 | syl21anc 1270 |
. . . 4
|
| 30 | 29 | 3adant2 1040 |
. . 3
|
| 31 | 4, 6, 7, 17, 30 | ercpbllemg 13358 |
. 2
|
| 32 | 2, 14, 31 | 3imtr4d 203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fv 5325 df-ov 6003 df-er 6678 df-ec 6680 |
| This theorem is referenced by: qusaddvallemg 13361 qusaddflemg 13362 qusgrp2 13645 qusrng 13916 qusring2 14024 |
| Copyright terms: Public domain | W3C validator |