ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ercpbl Unicode version

Theorem ercpbl 13359
Description: Translate the function compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r  |-  ( ph  ->  .~  Er  V )
ercpbl.v  |-  ( ph  ->  V  e.  W )
ercpbl.f  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
ercpbl.c  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( a  .+  b
)  e.  V )
ercpbl.e  |-  ( ph  ->  ( ( A  .~  C  /\  B  .~  D
)  ->  ( A  .+  B )  .~  ( C  .+  D ) ) )
Assertion
Ref Expression
ercpbl  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( (
( F `  A
)  =  ( F `
 C )  /\  ( F `  B )  =  ( F `  D ) )  -> 
( F `  ( A  .+  B ) )  =  ( F `  ( C  .+  D ) ) ) )
Distinct variable groups:    x,  .~    a, b, x, A    B, b, x    x, C    x, D    V, a, b, x    .+ , a,
b, x    ph, a, b, x
Allowed substitution hints:    B( a)    C( a, b)    D( a, b)    .~ ( a, b)    F( x, a, b)    W( x, a, b)

Proof of Theorem ercpbl
Dummy variables  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ercpbl.e . . 3  |-  ( ph  ->  ( ( A  .~  C  /\  B  .~  D
)  ->  ( A  .+  B )  .~  ( C  .+  D ) ) )
213ad2ant1 1042 . 2  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( ( A  .~  C  /\  B  .~  D )  ->  ( A  .+  B )  .~  ( C  .+  D ) ) )
3 ercpbl.r . . . . 5  |-  ( ph  ->  .~  Er  V )
433ad2ant1 1042 . . . 4  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  .~  Er  V
)
5 ercpbl.v . . . . 5  |-  ( ph  ->  V  e.  W )
653ad2ant1 1042 . . . 4  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  V  e.  W )
7 ercpbl.f . . . 4  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
8 simp2l 1047 . . . 4  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  A  e.  V )
9 simp3l 1049 . . . 4  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  C  e.  V )
104, 6, 7, 8, 9ercpbllemg 13358 . . 3  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( ( F `  A )  =  ( F `  C )  <->  A  .~  C ) )
11 simp2r 1048 . . . 4  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  B  e.  V )
12 simp3r 1050 . . . 4  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  D  e.  V )
134, 6, 7, 11, 12ercpbllemg 13358 . . 3  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( ( F `  B )  =  ( F `  D )  <->  B  .~  D ) )
1410, 13anbi12d 473 . 2  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( (
( F `  A
)  =  ( F `
 C )  /\  ( F `  B )  =  ( F `  D ) )  <->  ( A  .~  C  /\  B  .~  D ) ) )
15 ercpbl.c . . . . 5  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( a  .+  b
)  e.  V )
1615caovclg 6157 . . . 4  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( A  .+  B
)  e.  V )
17163adant3 1041 . . 3  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( A  .+  B )  e.  V
)
18 simprl 529 . . . . 5  |-  ( (
ph  /\  ( C  e.  V  /\  D  e.  V ) )  ->  C  e.  V )
19 simprr 531 . . . . 5  |-  ( (
ph  /\  ( C  e.  V  /\  D  e.  V ) )  ->  D  e.  V )
2015ralrimivva 2612 . . . . . . 7  |-  ( ph  ->  A. a  e.  V  A. b  e.  V  ( a  .+  b
)  e.  V )
21 oveq1 6007 . . . . . . . . 9  |-  ( a  =  c  ->  (
a  .+  b )  =  ( c  .+  b ) )
2221eleq1d 2298 . . . . . . . 8  |-  ( a  =  c  ->  (
( a  .+  b
)  e.  V  <->  ( c  .+  b )  e.  V
) )
23 oveq2 6008 . . . . . . . . 9  |-  ( b  =  d  ->  (
c  .+  b )  =  ( c  .+  d ) )
2423eleq1d 2298 . . . . . . . 8  |-  ( b  =  d  ->  (
( c  .+  b
)  e.  V  <->  ( c  .+  d )  e.  V
) )
2522, 24cbvral2v 2778 . . . . . . 7  |-  ( A. a  e.  V  A. b  e.  V  (
a  .+  b )  e.  V  <->  A. c  e.  V  A. d  e.  V  ( c  .+  d
)  e.  V )
2620, 25sylib 122 . . . . . 6  |-  ( ph  ->  A. c  e.  V  A. d  e.  V  ( c  .+  d
)  e.  V )
2726adantr 276 . . . . 5  |-  ( (
ph  /\  ( C  e.  V  /\  D  e.  V ) )  ->  A. c  e.  V  A. d  e.  V  ( c  .+  d
)  e.  V )
28 ovrspc2v 6026 . . . . 5  |-  ( ( ( C  e.  V  /\  D  e.  V
)  /\  A. c  e.  V  A. d  e.  V  ( c  .+  d )  e.  V
)  ->  ( C  .+  D )  e.  V
)
2918, 19, 27, 28syl21anc 1270 . . . 4  |-  ( (
ph  /\  ( C  e.  V  /\  D  e.  V ) )  -> 
( C  .+  D
)  e.  V )
30293adant2 1040 . . 3  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( C  .+  D )  e.  V
)
314, 6, 7, 17, 30ercpbllemg 13358 . 2  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( ( F `  ( A  .+  B ) )  =  ( F `  ( C  .+  D ) )  <-> 
( A  .+  B
)  .~  ( C  .+  D ) ) )
322, 14, 313imtr4d 203 1  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( (
( F `  A
)  =  ( F `
 C )  /\  ( F `  B )  =  ( F `  D ) )  -> 
( F `  ( A  .+  B ) )  =  ( F `  ( C  .+  D ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   class class class wbr 4082    |-> cmpt 4144   ` cfv 5317  (class class class)co 6000    Er wer 6675   [cec 6676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fv 5325  df-ov 6003  df-er 6678  df-ec 6680
This theorem is referenced by:  qusaddvallemg  13361  qusaddflemg  13362  qusgrp2  13645  qusrng  13916  qusring2  14024
  Copyright terms: Public domain W3C validator