ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ercpbl Unicode version

Theorem ercpbl 12914
Description: Translate the function compatibility relation to a quotient set. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) (Revised by AV, 12-Jul-2024.)
Hypotheses
Ref Expression
ercpbl.r  |-  ( ph  ->  .~  Er  V )
ercpbl.v  |-  ( ph  ->  V  e.  W )
ercpbl.f  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
ercpbl.c  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( a  .+  b
)  e.  V )
ercpbl.e  |-  ( ph  ->  ( ( A  .~  C  /\  B  .~  D
)  ->  ( A  .+  B )  .~  ( C  .+  D ) ) )
Assertion
Ref Expression
ercpbl  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( (
( F `  A
)  =  ( F `
 C )  /\  ( F `  B )  =  ( F `  D ) )  -> 
( F `  ( A  .+  B ) )  =  ( F `  ( C  .+  D ) ) ) )
Distinct variable groups:    x,  .~    a, b, x, A    B, b, x    x, C    x, D    V, a, b, x    .+ , a,
b, x    ph, a, b, x
Allowed substitution hints:    B( a)    C( a, b)    D( a, b)    .~ ( a, b)    F( x, a, b)    W( x, a, b)

Proof of Theorem ercpbl
Dummy variables  c  d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ercpbl.e . . 3  |-  ( ph  ->  ( ( A  .~  C  /\  B  .~  D
)  ->  ( A  .+  B )  .~  ( C  .+  D ) ) )
213ad2ant1 1020 . 2  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( ( A  .~  C  /\  B  .~  D )  ->  ( A  .+  B )  .~  ( C  .+  D ) ) )
3 ercpbl.r . . . . 5  |-  ( ph  ->  .~  Er  V )
433ad2ant1 1020 . . . 4  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  .~  Er  V
)
5 ercpbl.v . . . . 5  |-  ( ph  ->  V  e.  W )
653ad2ant1 1020 . . . 4  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  V  e.  W )
7 ercpbl.f . . . 4  |-  F  =  ( x  e.  V  |->  [ x ]  .~  )
8 simp2l 1025 . . . 4  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  A  e.  V )
9 simp3l 1027 . . . 4  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  C  e.  V )
104, 6, 7, 8, 9ercpbllemg 12913 . . 3  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( ( F `  A )  =  ( F `  C )  <->  A  .~  C ) )
11 simp2r 1026 . . . 4  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  B  e.  V )
12 simp3r 1028 . . . 4  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  D  e.  V )
134, 6, 7, 11, 12ercpbllemg 12913 . . 3  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( ( F `  B )  =  ( F `  D )  <->  B  .~  D ) )
1410, 13anbi12d 473 . 2  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( (
( F `  A
)  =  ( F `
 C )  /\  ( F `  B )  =  ( F `  D ) )  <->  ( A  .~  C  /\  B  .~  D ) ) )
15 ercpbl.c . . . . 5  |-  ( (
ph  /\  ( a  e.  V  /\  b  e.  V ) )  -> 
( a  .+  b
)  e.  V )
1615caovclg 6071 . . . 4  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( A  .+  B
)  e.  V )
17163adant3 1019 . . 3  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( A  .+  B )  e.  V
)
18 simprl 529 . . . . 5  |-  ( (
ph  /\  ( C  e.  V  /\  D  e.  V ) )  ->  C  e.  V )
19 simprr 531 . . . . 5  |-  ( (
ph  /\  ( C  e.  V  /\  D  e.  V ) )  ->  D  e.  V )
2015ralrimivva 2576 . . . . . . 7  |-  ( ph  ->  A. a  e.  V  A. b  e.  V  ( a  .+  b
)  e.  V )
21 oveq1 5925 . . . . . . . . 9  |-  ( a  =  c  ->  (
a  .+  b )  =  ( c  .+  b ) )
2221eleq1d 2262 . . . . . . . 8  |-  ( a  =  c  ->  (
( a  .+  b
)  e.  V  <->  ( c  .+  b )  e.  V
) )
23 oveq2 5926 . . . . . . . . 9  |-  ( b  =  d  ->  (
c  .+  b )  =  ( c  .+  d ) )
2423eleq1d 2262 . . . . . . . 8  |-  ( b  =  d  ->  (
( c  .+  b
)  e.  V  <->  ( c  .+  d )  e.  V
) )
2522, 24cbvral2v 2739 . . . . . . 7  |-  ( A. a  e.  V  A. b  e.  V  (
a  .+  b )  e.  V  <->  A. c  e.  V  A. d  e.  V  ( c  .+  d
)  e.  V )
2620, 25sylib 122 . . . . . 6  |-  ( ph  ->  A. c  e.  V  A. d  e.  V  ( c  .+  d
)  e.  V )
2726adantr 276 . . . . 5  |-  ( (
ph  /\  ( C  e.  V  /\  D  e.  V ) )  ->  A. c  e.  V  A. d  e.  V  ( c  .+  d
)  e.  V )
28 ovrspc2v 5944 . . . . 5  |-  ( ( ( C  e.  V  /\  D  e.  V
)  /\  A. c  e.  V  A. d  e.  V  ( c  .+  d )  e.  V
)  ->  ( C  .+  D )  e.  V
)
2918, 19, 27, 28syl21anc 1248 . . . 4  |-  ( (
ph  /\  ( C  e.  V  /\  D  e.  V ) )  -> 
( C  .+  D
)  e.  V )
30293adant2 1018 . . 3  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( C  .+  D )  e.  V
)
314, 6, 7, 17, 30ercpbllemg 12913 . 2  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( ( F `  ( A  .+  B ) )  =  ( F `  ( C  .+  D ) )  <-> 
( A  .+  B
)  .~  ( C  .+  D ) ) )
322, 14, 313imtr4d 203 1  |-  ( (
ph  /\  ( A  e.  V  /\  B  e.  V )  /\  ( C  e.  V  /\  D  e.  V )
)  ->  ( (
( F `  A
)  =  ( F `
 C )  /\  ( F `  B )  =  ( F `  D ) )  -> 
( F `  ( A  .+  B ) )  =  ( F `  ( C  .+  D ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   class class class wbr 4029    |-> cmpt 4090   ` cfv 5254  (class class class)co 5918    Er wer 6584   [cec 6585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fv 5262  df-ov 5921  df-er 6587  df-ec 6589
This theorem is referenced by:  qusaddvallemg  12916  qusaddflemg  12917  qusgrp2  13183  qusrng  13454  qusring2  13562
  Copyright terms: Public domain W3C validator