ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f10 Unicode version

Theorem f10 5496
Description: The empty set maps one-to-one into any class. (Contributed by NM, 7-Apr-1998.)
Assertion
Ref Expression
f10  |-  (/) : (/) -1-1-> A

Proof of Theorem f10
StepHypRef Expression
1 f0 5407 . 2  |-  (/) : (/) --> A
2 fun0 5275 . . 3  |-  Fun  (/)
3 cnv0 5033 . . . 4  |-  `' (/)  =  (/)
43funeqi 5238 . . 3  |-  ( Fun  `' (/)  <->  Fun  (/) )
52, 4mpbir 146 . 2  |-  Fun  `' (/)
6 df-f1 5222 . 2  |-  ( (/) :
(/) -1-1-> A  <->  ( (/) : (/) --> A  /\  Fun  `' (/) ) )
71, 5, 6mpbir2an 942 1  |-  (/) : (/) -1-1-> A
Colors of variables: wff set class
Syntax hints:   (/)c0 3423   `'ccnv 4626   Fun wfun 5211   -->wf 5213   -1-1->wf1 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222
This theorem is referenced by:  fo00  5498
  Copyright terms: Public domain W3C validator