Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f10 | GIF version |
Description: The empty set maps one-to-one into any class. (Contributed by NM, 7-Apr-1998.) |
Ref | Expression |
---|---|
f10 | ⊢ ∅:∅–1-1→𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f0 5378 | . 2 ⊢ ∅:∅⟶𝐴 | |
2 | fun0 5246 | . . 3 ⊢ Fun ∅ | |
3 | cnv0 5007 | . . . 4 ⊢ ◡∅ = ∅ | |
4 | 3 | funeqi 5209 | . . 3 ⊢ (Fun ◡∅ ↔ Fun ∅) |
5 | 2, 4 | mpbir 145 | . 2 ⊢ Fun ◡∅ |
6 | df-f1 5193 | . 2 ⊢ (∅:∅–1-1→𝐴 ↔ (∅:∅⟶𝐴 ∧ Fun ◡∅)) | |
7 | 1, 5, 6 | mpbir2an 932 | 1 ⊢ ∅:∅–1-1→𝐴 |
Colors of variables: wff set class |
Syntax hints: ∅c0 3409 ◡ccnv 4603 Fun wfun 5182 ⟶wf 5184 –1-1→wf1 5185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 |
This theorem is referenced by: fo00 5468 |
Copyright terms: Public domain | W3C validator |