| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2r | Unicode version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp2r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. 2
| |
| 2 | 1 | 3ad2ant2 1022 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simpl2r 1054 simpr2r 1060 simp12r 1114 simp22r 1120 simp32r 1126 issod 4366 funprg 5324 fsnunf 5784 f1oiso2 5896 tfrlemibxssdm 6413 ecopovtrn 6719 ecopovtrng 6722 dftap2 7363 addassnqg 7495 ltsonq 7511 ltanqg 7513 ltmnqg 7514 addassnq0 7575 recexprlem1ssl 7746 mulasssrg 7871 distrsrg 7872 lttrsr 7875 ltsosr 7877 ltasrg 7883 mulextsr1lem 7893 mulextsr1 7894 axmulass 7986 axdistr 7987 dmdcanap 8795 lediv2 8964 ltdiv23 8965 lediv23 8966 xaddass2 9992 xlt2add 10002 expaddzaplem 10727 expaddzap 10728 expmulzap 10730 expdivap 10735 leisorel 10982 swrdspsleq 11120 bdtrilem 11550 xrbdtri 11587 fldivndvdslt 12248 prmexpb 12473 pcpremul 12616 pcdiv 12625 pcqmul 12626 pcqdiv 12630 4sqlem12 12725 f1ocpbllem 13142 ercpbl 13163 erlecpbl 13164 cmn4 13641 ablsub4 13649 abladdsub4 13650 cnptoprest 14711 ssblps 14897 ssbl 14898 tgqioo 15027 plyadd 15223 plymul 15224 rplogbchbase 15422 |
| Copyright terms: Public domain | W3C validator |