| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2r | Unicode version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp2r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. 2
| |
| 2 | 1 | 3ad2ant2 1021 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simpl2r 1053 simpr2r 1059 simp12r 1113 simp22r 1119 simp32r 1125 issod 4355 funprg 5309 fsnunf 5765 f1oiso2 5877 tfrlemibxssdm 6394 ecopovtrn 6700 ecopovtrng 6703 dftap2 7334 addassnqg 7466 ltsonq 7482 ltanqg 7484 ltmnqg 7485 addassnq0 7546 recexprlem1ssl 7717 mulasssrg 7842 distrsrg 7843 lttrsr 7846 ltsosr 7848 ltasrg 7854 mulextsr1lem 7864 mulextsr1 7865 axmulass 7957 axdistr 7958 dmdcanap 8766 lediv2 8935 ltdiv23 8936 lediv23 8937 xaddass2 9962 xlt2add 9972 expaddzaplem 10691 expaddzap 10692 expmulzap 10694 expdivap 10699 leisorel 10946 bdtrilem 11421 xrbdtri 11458 fldivndvdslt 12119 prmexpb 12344 pcpremul 12487 pcdiv 12496 pcqmul 12497 pcqdiv 12501 4sqlem12 12596 f1ocpbllem 13012 ercpbl 13033 erlecpbl 13034 cmn4 13511 ablsub4 13519 abladdsub4 13520 cnptoprest 14559 ssblps 14745 ssbl 14746 tgqioo 14875 plyadd 15071 plymul 15072 rplogbchbase 15270 |
| Copyright terms: Public domain | W3C validator |