![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp2r | Unicode version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp2r |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | 3ad2ant2 1021 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: simpl2r 1053 simpr2r 1059 simp12r 1113 simp22r 1119 simp32r 1125 issod 4350 funprg 5304 fsnunf 5758 f1oiso2 5870 tfrlemibxssdm 6380 ecopovtrn 6686 ecopovtrng 6689 dftap2 7311 addassnqg 7442 ltsonq 7458 ltanqg 7460 ltmnqg 7461 addassnq0 7522 recexprlem1ssl 7693 mulasssrg 7818 distrsrg 7819 lttrsr 7822 ltsosr 7824 ltasrg 7830 mulextsr1lem 7840 mulextsr1 7841 axmulass 7933 axdistr 7934 dmdcanap 8741 lediv2 8910 ltdiv23 8911 lediv23 8912 xaddass2 9936 xlt2add 9946 expaddzaplem 10653 expaddzap 10654 expmulzap 10656 expdivap 10661 leisorel 10908 bdtrilem 11382 xrbdtri 11419 fldivndvdslt 12076 prmexpb 12289 pcpremul 12431 pcdiv 12440 pcqmul 12441 pcqdiv 12445 4sqlem12 12540 f1ocpbllem 12893 ercpbl 12914 erlecpbl 12915 cmn4 13375 ablsub4 13383 abladdsub4 13384 cnptoprest 14407 ssblps 14593 ssbl 14594 tgqioo 14715 plyadd 14897 plymul 14898 rplogbchbase 15082 |
Copyright terms: Public domain | W3C validator |