![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp2r | Unicode version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp2r |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | 3ad2ant2 1021 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: simpl2r 1053 simpr2r 1059 simp12r 1113 simp22r 1119 simp32r 1125 issod 4351 funprg 5305 fsnunf 5759 f1oiso2 5871 tfrlemibxssdm 6382 ecopovtrn 6688 ecopovtrng 6691 dftap2 7313 addassnqg 7444 ltsonq 7460 ltanqg 7462 ltmnqg 7463 addassnq0 7524 recexprlem1ssl 7695 mulasssrg 7820 distrsrg 7821 lttrsr 7824 ltsosr 7826 ltasrg 7832 mulextsr1lem 7842 mulextsr1 7843 axmulass 7935 axdistr 7936 dmdcanap 8743 lediv2 8912 ltdiv23 8913 lediv23 8914 xaddass2 9939 xlt2add 9949 expaddzaplem 10656 expaddzap 10657 expmulzap 10659 expdivap 10664 leisorel 10911 bdtrilem 11385 xrbdtri 11422 fldivndvdslt 12079 prmexpb 12292 pcpremul 12434 pcdiv 12443 pcqmul 12444 pcqdiv 12448 4sqlem12 12543 f1ocpbllem 12896 ercpbl 12917 erlecpbl 12918 cmn4 13378 ablsub4 13386 abladdsub4 13387 cnptoprest 14418 ssblps 14604 ssbl 14605 tgqioo 14734 plyadd 14930 plymul 14931 rplogbchbase 15123 |
Copyright terms: Public domain | W3C validator |