| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2r | Unicode version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp2r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. 2
| |
| 2 | 1 | 3ad2ant2 1022 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simpl2r 1054 simpr2r 1060 simp12r 1114 simp22r 1120 simp32r 1126 issod 4384 funprg 5343 fsnunf 5807 f1oiso2 5919 tfrlemibxssdm 6436 ecopovtrn 6742 ecopovtrng 6745 dftap2 7398 addassnqg 7530 ltsonq 7546 ltanqg 7548 ltmnqg 7549 addassnq0 7610 recexprlem1ssl 7781 mulasssrg 7906 distrsrg 7907 lttrsr 7910 ltsosr 7912 ltasrg 7918 mulextsr1lem 7928 mulextsr1 7929 axmulass 8021 axdistr 8022 dmdcanap 8830 lediv2 8999 ltdiv23 9000 lediv23 9001 xaddass2 10027 xlt2add 10037 expaddzaplem 10764 expaddzap 10765 expmulzap 10767 expdivap 10772 leisorel 11019 swrdspsleq 11158 pfxeq 11187 ccatopth2 11208 bdtrilem 11665 xrbdtri 11702 fldivndvdslt 12363 prmexpb 12588 pcpremul 12731 pcdiv 12740 pcqmul 12741 pcqdiv 12745 4sqlem12 12840 f1ocpbllem 13257 ercpbl 13278 erlecpbl 13279 cmn4 13756 ablsub4 13764 abladdsub4 13765 cnptoprest 14826 ssblps 15012 ssbl 15013 tgqioo 15142 plyadd 15338 plymul 15339 rplogbchbase 15537 |
| Copyright terms: Public domain | W3C validator |