ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp2r Unicode version

Theorem simp2r 1048
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.)
Assertion
Ref Expression
simp2r  |-  ( (
ph  /\  ( ps  /\ 
ch )  /\  th )  ->  ch )

Proof of Theorem simp2r
StepHypRef Expression
1 simpr 110 . 2  |-  ( ( ps  /\  ch )  ->  ch )
213ad2ant2 1043 1  |-  ( (
ph  /\  ( ps  /\ 
ch )  /\  th )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  simpl2r  1075  simpr2r  1081  simp12r  1135  simp22r  1141  simp32r  1147  issod  4409  funprg  5370  fsnunf  5838  f1oiso2  5950  tfrlemibxssdm  6471  ecopovtrn  6777  ecopovtrng  6780  dftap2  7433  addassnqg  7565  ltsonq  7581  ltanqg  7583  ltmnqg  7584  addassnq0  7645  recexprlem1ssl  7816  mulasssrg  7941  distrsrg  7942  lttrsr  7945  ltsosr  7947  ltasrg  7953  mulextsr1lem  7963  mulextsr1  7964  axmulass  8056  axdistr  8057  dmdcanap  8865  lediv2  9034  ltdiv23  9035  lediv23  9036  xaddass2  10062  xlt2add  10072  expaddzaplem  10799  expaddzap  10800  expmulzap  10802  expdivap  10807  leisorel  11054  swrdspsleq  11194  pfxeq  11223  ccatopth2  11244  bdtrilem  11745  xrbdtri  11782  fldivndvdslt  12443  prmexpb  12668  pcpremul  12811  pcdiv  12820  pcqmul  12821  pcqdiv  12825  4sqlem12  12920  f1ocpbllem  13338  ercpbl  13359  erlecpbl  13360  cmn4  13837  ablsub4  13845  abladdsub4  13846  cnptoprest  14907  ssblps  15093  ssbl  15094  tgqioo  15223  plyadd  15419  plymul  15420  rplogbchbase  15618
  Copyright terms: Public domain W3C validator