| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2l | Unicode version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp2l |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. 2
| |
| 2 | 1 | 3ad2ant2 1022 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simpl2l 1053 simpr2l 1059 simp12l 1113 simp22l 1119 simp32l 1125 issod 4366 funprg 5324 fsnunf 5784 f1oiso2 5896 ecopovtrn 6719 ecopovtrng 6722 dftap2 7363 addassnqg 7495 ltsonq 7511 ltanqg 7513 ltmnqg 7514 addassnq0 7575 recexprlem1ssu 7747 mulasssrg 7871 distrsrg 7872 lttrsr 7875 ltsosr 7877 ltasrg 7883 mulextsr1lem 7893 mulextsr1 7894 axmulass 7986 axdistr 7987 dmdcanap 8795 ltdiv2 8960 lediv2 8964 ltdiv23 8965 lediv23 8966 xaddass 9991 xaddass2 9992 xlt2add 10002 expaddzaplem 10727 expaddzap 10728 expmulzap 10730 expdivap 10735 leisorel 10982 swrdspsleq 11120 bdtrilem 11550 bdtri 11551 xrbdtri 11587 fsumsplitsnun 11730 prmexpb 12473 pcpremul 12616 pcdiv 12625 pcqmul 12626 pcqdiv 12630 4sqlem12 12725 f1ocpbllem 13142 ercpbl 13163 erlecpbl 13164 cmn4 13641 ablsub4 13649 abladdsub4 13650 cnptoprest 14711 ssblps 14897 ssbl 14898 tgqioo 15027 plyadd 15223 plymul 15224 rplogbchbase 15422 |
| Copyright terms: Public domain | W3C validator |