| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2l | Unicode version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp2l |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. 2
| |
| 2 | 1 | 3ad2ant2 1043 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: simpl2l 1074 simpr2l 1080 simp12l 1134 simp22l 1140 simp32l 1146 issod 4409 funprg 5370 fsnunf 5838 f1oiso2 5950 ecopovtrn 6777 ecopovtrng 6780 dftap2 7433 addassnqg 7565 ltsonq 7581 ltanqg 7583 ltmnqg 7584 addassnq0 7645 recexprlem1ssu 7817 mulasssrg 7941 distrsrg 7942 lttrsr 7945 ltsosr 7947 ltasrg 7953 mulextsr1lem 7963 mulextsr1 7964 axmulass 8056 axdistr 8057 dmdcanap 8865 ltdiv2 9030 lediv2 9034 ltdiv23 9035 lediv23 9036 xaddass 10061 xaddass2 10062 xlt2add 10072 expaddzaplem 10799 expaddzap 10800 expmulzap 10802 expdivap 10807 leisorel 11054 swrdspsleq 11194 pfxeq 11223 ccatopth2 11244 bdtrilem 11745 bdtri 11746 xrbdtri 11782 fsumsplitsnun 11925 prmexpb 12668 pcpremul 12811 pcdiv 12820 pcqmul 12821 pcqdiv 12825 4sqlem12 12920 f1ocpbllem 13338 ercpbl 13359 erlecpbl 13360 cmn4 13837 ablsub4 13845 abladdsub4 13846 cnptoprest 14907 ssblps 15093 ssbl 15094 tgqioo 15223 plyadd 15419 plymul 15420 rplogbchbase 15618 |
| Copyright terms: Public domain | W3C validator |