| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2l | Unicode version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp2l |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. 2
| |
| 2 | 1 | 3ad2ant2 1021 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simpl2l 1052 simpr2l 1058 simp12l 1112 simp22l 1118 simp32l 1124 issod 4365 funprg 5323 fsnunf 5783 f1oiso2 5895 ecopovtrn 6718 ecopovtrng 6721 dftap2 7362 addassnqg 7494 ltsonq 7510 ltanqg 7512 ltmnqg 7513 addassnq0 7574 recexprlem1ssu 7746 mulasssrg 7870 distrsrg 7871 lttrsr 7874 ltsosr 7876 ltasrg 7882 mulextsr1lem 7892 mulextsr1 7893 axmulass 7985 axdistr 7986 dmdcanap 8794 ltdiv2 8959 lediv2 8963 ltdiv23 8964 lediv23 8965 xaddass 9990 xaddass2 9991 xlt2add 10001 expaddzaplem 10725 expaddzap 10726 expmulzap 10728 expdivap 10733 leisorel 10980 bdtrilem 11521 bdtri 11522 xrbdtri 11558 fsumsplitsnun 11701 prmexpb 12444 pcpremul 12587 pcdiv 12596 pcqmul 12597 pcqdiv 12601 4sqlem12 12696 f1ocpbllem 13113 ercpbl 13134 erlecpbl 13135 cmn4 13612 ablsub4 13620 abladdsub4 13621 cnptoprest 14682 ssblps 14868 ssbl 14869 tgqioo 14998 plyadd 15194 plymul 15195 rplogbchbase 15393 |
| Copyright terms: Public domain | W3C validator |