| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2l | Unicode version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp2l |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. 2
| |
| 2 | 1 | 3ad2ant2 1022 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simpl2l 1053 simpr2l 1059 simp12l 1113 simp22l 1119 simp32l 1125 issod 4379 funprg 5338 fsnunf 5802 f1oiso2 5914 ecopovtrn 6737 ecopovtrng 6740 dftap2 7393 addassnqg 7525 ltsonq 7541 ltanqg 7543 ltmnqg 7544 addassnq0 7605 recexprlem1ssu 7777 mulasssrg 7901 distrsrg 7902 lttrsr 7905 ltsosr 7907 ltasrg 7913 mulextsr1lem 7923 mulextsr1 7924 axmulass 8016 axdistr 8017 dmdcanap 8825 ltdiv2 8990 lediv2 8994 ltdiv23 8995 lediv23 8996 xaddass 10021 xaddass2 10022 xlt2add 10032 expaddzaplem 10759 expaddzap 10760 expmulzap 10762 expdivap 10767 leisorel 11014 swrdspsleq 11153 pfxeq 11182 ccatopth2 11203 bdtrilem 11635 bdtri 11636 xrbdtri 11672 fsumsplitsnun 11815 prmexpb 12558 pcpremul 12701 pcdiv 12710 pcqmul 12711 pcqdiv 12715 4sqlem12 12810 f1ocpbllem 13227 ercpbl 13248 erlecpbl 13249 cmn4 13726 ablsub4 13734 abladdsub4 13735 cnptoprest 14796 ssblps 14982 ssbl 14983 tgqioo 15112 plyadd 15308 plymul 15309 rplogbchbase 15507 |
| Copyright terms: Public domain | W3C validator |