| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2l | Unicode version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp2l |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. 2
| |
| 2 | 1 | 3ad2ant2 1021 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simpl2l 1052 simpr2l 1058 simp12l 1112 simp22l 1118 simp32l 1124 issod 4365 funprg 5323 fsnunf 5783 f1oiso2 5895 ecopovtrn 6718 ecopovtrng 6721 dftap2 7362 addassnqg 7494 ltsonq 7510 ltanqg 7512 ltmnqg 7513 addassnq0 7574 recexprlem1ssu 7746 mulasssrg 7870 distrsrg 7871 lttrsr 7874 ltsosr 7876 ltasrg 7882 mulextsr1lem 7892 mulextsr1 7893 axmulass 7985 axdistr 7986 dmdcanap 8794 ltdiv2 8959 lediv2 8963 ltdiv23 8964 lediv23 8965 xaddass 9990 xaddass2 9991 xlt2add 10001 expaddzaplem 10725 expaddzap 10726 expmulzap 10728 expdivap 10733 leisorel 10980 bdtrilem 11492 bdtri 11493 xrbdtri 11529 fsumsplitsnun 11672 prmexpb 12415 pcpremul 12558 pcdiv 12567 pcqmul 12568 pcqdiv 12572 4sqlem12 12667 f1ocpbllem 13084 ercpbl 13105 erlecpbl 13106 cmn4 13583 ablsub4 13591 abladdsub4 13592 cnptoprest 14653 ssblps 14839 ssbl 14840 tgqioo 14969 plyadd 15165 plymul 15166 rplogbchbase 15364 |
| Copyright terms: Public domain | W3C validator |