| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imasmulr | Unicode version | ||
| Description: The ring multiplication in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| Ref | Expression |
|---|---|
| imasbas.u |
|
| imasbas.v |
|
| imasbas.f |
|
| imasbas.r |
|
| imasmulr.p |
|
| imasmulr.t |
|
| Ref | Expression |
|---|---|
| imasmulr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasmulr.t |
. 2
| |
| 2 | imasbas.u |
. . . . 5
| |
| 3 | imasbas.v |
. . . . 5
| |
| 4 | eqid 2206 |
. . . . 5
| |
| 5 | imasmulr.p |
. . . . 5
| |
| 6 | eqid 2206 |
. . . . 5
| |
| 7 | eqidd 2207 |
. . . . 5
| |
| 8 | eqidd 2207 |
. . . . 5
| |
| 9 | imasbas.f |
. . . . 5
| |
| 10 | imasbas.r |
. . . . 5
| |
| 11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | imasival 13223 |
. . . 4
|
| 12 | 11 | fveq1d 5596 |
. . 3
|
| 13 | fof 5515 |
. . . . . . . 8
| |
| 14 | 9, 13 | syl 14 |
. . . . . . 7
|
| 15 | basfn 12975 |
. . . . . . . . 9
| |
| 16 | 10 | elexd 2787 |
. . . . . . . . 9
|
| 17 | funfvex 5611 |
. . . . . . . . . 10
| |
| 18 | 17 | funfni 5390 |
. . . . . . . . 9
|
| 19 | 15, 16, 18 | sylancr 414 |
. . . . . . . 8
|
| 20 | 3, 19 | eqeltrd 2283 |
. . . . . . 7
|
| 21 | 14, 20 | fexd 5832 |
. . . . . 6
|
| 22 | imasex 13222 |
. . . . . 6
| |
| 23 | 21, 10, 22 | syl2anc 411 |
. . . . 5
|
| 24 | 2, 23 | eqeltrd 2283 |
. . . 4
|
| 25 | mulridx 13048 |
. . . 4
| |
| 26 | mulrslid 13049 |
. . . . 5
| |
| 27 | 26 | simpri 113 |
. . . 4
|
| 28 | 24, 25, 27 | strndxid 12945 |
. . 3
|
| 29 | 27 | a1i 9 |
. . . 4
|
| 30 | vex 2776 |
. . . . . . . . . . . 12
| |
| 31 | fvexg 5613 |
. . . . . . . . . . . 12
| |
| 32 | 21, 30, 31 | sylancl 413 |
. . . . . . . . . . 11
|
| 33 | vex 2776 |
. . . . . . . . . . . 12
| |
| 34 | fvexg 5613 |
. . . . . . . . . . . 12
| |
| 35 | 21, 33, 34 | sylancl 413 |
. . . . . . . . . . 11
|
| 36 | opexg 4285 |
. . . . . . . . . . 11
| |
| 37 | 32, 35, 36 | syl2anc 411 |
. . . . . . . . . 10
|
| 38 | 26 | slotex 12944 |
. . . . . . . . . . . . . 14
|
| 39 | 10, 38 | syl 14 |
. . . . . . . . . . . . 13
|
| 40 | 5, 39 | eqeltrid 2293 |
. . . . . . . . . . . 12
|
| 41 | 33 | a1i 9 |
. . . . . . . . . . . 12
|
| 42 | ovexg 5996 |
. . . . . . . . . . . 12
| |
| 43 | 30, 40, 41, 42 | mp3an2i 1355 |
. . . . . . . . . . 11
|
| 44 | fvexg 5613 |
. . . . . . . . . . 11
| |
| 45 | 21, 43, 44 | syl2anc 411 |
. . . . . . . . . 10
|
| 46 | opexg 4285 |
. . . . . . . . . 10
| |
| 47 | 37, 45, 46 | syl2anc 411 |
. . . . . . . . 9
|
| 48 | snexg 4239 |
. . . . . . . . 9
| |
| 49 | 47, 48 | syl 14 |
. . . . . . . 8
|
| 50 | 49 | ralrimivw 2581 |
. . . . . . 7
|
| 51 | iunexg 6222 |
. . . . . . 7
| |
| 52 | 20, 50, 51 | syl2anc 411 |
. . . . . 6
|
| 53 | 52 | ralrimivw 2581 |
. . . . 5
|
| 54 | iunexg 6222 |
. . . . 5
| |
| 55 | 20, 53, 54 | syl2anc 411 |
. . . 4
|
| 56 | basendxnmulrndx 13051 |
. . . . 5
| |
| 57 | 56 | a1i 9 |
. . . 4
|
| 58 | plusgndxnmulrndx 13050 |
. . . . 5
| |
| 59 | 58 | a1i 9 |
. . . 4
|
| 60 | fvtp3g 5812 |
. . . 4
| |
| 61 | 29, 55, 57, 59, 60 | syl22anc 1251 |
. . 3
|
| 62 | 12, 28, 61 | 3eqtr3rd 2248 |
. 2
|
| 63 | 1, 62 | eqtr4id 2258 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-addass 8057 ax-i2m1 8060 ax-0lt1 8061 ax-0id 8063 ax-rnegex 8064 ax-pre-ltirr 8067 ax-pre-lttrn 8069 ax-pre-ltadd 8071 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-tp 3646 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-pnf 8139 df-mnf 8140 df-ltxr 8142 df-inn 9067 df-2 9125 df-3 9126 df-ndx 12920 df-slot 12921 df-base 12923 df-plusg 13007 df-mulr 13008 df-iimas 13219 |
| This theorem is referenced by: imasmulfn 13237 imasmulval 13238 imasmulf 13239 qusmulval 13254 qusmulf 13255 |
| Copyright terms: Public domain | W3C validator |