| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imasmulr | Unicode version | ||
| Description: The ring multiplication in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| Ref | Expression |
|---|---|
| imasbas.u |
|
| imasbas.v |
|
| imasbas.f |
|
| imasbas.r |
|
| imasmulr.p |
|
| imasmulr.t |
|
| Ref | Expression |
|---|---|
| imasmulr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasmulr.t |
. 2
| |
| 2 | imasbas.u |
. . . . 5
| |
| 3 | imasbas.v |
. . . . 5
| |
| 4 | eqid 2204 |
. . . . 5
| |
| 5 | imasmulr.p |
. . . . 5
| |
| 6 | eqid 2204 |
. . . . 5
| |
| 7 | eqidd 2205 |
. . . . 5
| |
| 8 | eqidd 2205 |
. . . . 5
| |
| 9 | imasbas.f |
. . . . 5
| |
| 10 | imasbas.r |
. . . . 5
| |
| 11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | imasival 13109 |
. . . 4
|
| 12 | 11 | fveq1d 5577 |
. . 3
|
| 13 | fof 5497 |
. . . . . . . 8
| |
| 14 | 9, 13 | syl 14 |
. . . . . . 7
|
| 15 | basfn 12861 |
. . . . . . . . 9
| |
| 16 | 10 | elexd 2784 |
. . . . . . . . 9
|
| 17 | funfvex 5592 |
. . . . . . . . . 10
| |
| 18 | 17 | funfni 5375 |
. . . . . . . . 9
|
| 19 | 15, 16, 18 | sylancr 414 |
. . . . . . . 8
|
| 20 | 3, 19 | eqeltrd 2281 |
. . . . . . 7
|
| 21 | 14, 20 | fexd 5813 |
. . . . . 6
|
| 22 | imasex 13108 |
. . . . . 6
| |
| 23 | 21, 10, 22 | syl2anc 411 |
. . . . 5
|
| 24 | 2, 23 | eqeltrd 2281 |
. . . 4
|
| 25 | mulridx 12934 |
. . . 4
| |
| 26 | mulrslid 12935 |
. . . . 5
| |
| 27 | 26 | simpri 113 |
. . . 4
|
| 28 | 24, 25, 27 | strndxid 12831 |
. . 3
|
| 29 | 27 | a1i 9 |
. . . 4
|
| 30 | vex 2774 |
. . . . . . . . . . . 12
| |
| 31 | fvexg 5594 |
. . . . . . . . . . . 12
| |
| 32 | 21, 30, 31 | sylancl 413 |
. . . . . . . . . . 11
|
| 33 | vex 2774 |
. . . . . . . . . . . 12
| |
| 34 | fvexg 5594 |
. . . . . . . . . . . 12
| |
| 35 | 21, 33, 34 | sylancl 413 |
. . . . . . . . . . 11
|
| 36 | opexg 4271 |
. . . . . . . . . . 11
| |
| 37 | 32, 35, 36 | syl2anc 411 |
. . . . . . . . . 10
|
| 38 | 26 | slotex 12830 |
. . . . . . . . . . . . . 14
|
| 39 | 10, 38 | syl 14 |
. . . . . . . . . . . . 13
|
| 40 | 5, 39 | eqeltrid 2291 |
. . . . . . . . . . . 12
|
| 41 | 33 | a1i 9 |
. . . . . . . . . . . 12
|
| 42 | ovexg 5977 |
. . . . . . . . . . . 12
| |
| 43 | 30, 40, 41, 42 | mp3an2i 1354 |
. . . . . . . . . . 11
|
| 44 | fvexg 5594 |
. . . . . . . . . . 11
| |
| 45 | 21, 43, 44 | syl2anc 411 |
. . . . . . . . . 10
|
| 46 | opexg 4271 |
. . . . . . . . . 10
| |
| 47 | 37, 45, 46 | syl2anc 411 |
. . . . . . . . 9
|
| 48 | snexg 4227 |
. . . . . . . . 9
| |
| 49 | 47, 48 | syl 14 |
. . . . . . . 8
|
| 50 | 49 | ralrimivw 2579 |
. . . . . . 7
|
| 51 | iunexg 6203 |
. . . . . . 7
| |
| 52 | 20, 50, 51 | syl2anc 411 |
. . . . . 6
|
| 53 | 52 | ralrimivw 2579 |
. . . . 5
|
| 54 | iunexg 6203 |
. . . . 5
| |
| 55 | 20, 53, 54 | syl2anc 411 |
. . . 4
|
| 56 | basendxnmulrndx 12937 |
. . . . 5
| |
| 57 | 56 | a1i 9 |
. . . 4
|
| 58 | plusgndxnmulrndx 12936 |
. . . . 5
| |
| 59 | 58 | a1i 9 |
. . . 4
|
| 60 | fvtp3g 5793 |
. . . 4
| |
| 61 | 29, 55, 57, 59, 60 | syl22anc 1250 |
. . 3
|
| 62 | 12, 28, 61 | 3eqtr3rd 2246 |
. 2
|
| 63 | 1, 62 | eqtr4id 2256 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-tp 3640 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-inn 9036 df-2 9094 df-3 9095 df-ndx 12806 df-slot 12807 df-base 12809 df-plusg 12893 df-mulr 12894 df-iimas 13105 |
| This theorem is referenced by: imasmulfn 13123 imasmulval 13124 imasmulf 13125 qusmulval 13140 qusmulf 13141 |
| Copyright terms: Public domain | W3C validator |