ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasmulr Unicode version

Theorem imasmulr 13337
Description: The ring multiplication in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
imasbas.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasbas.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasbas.f  |-  ( ph  ->  F : V -onto-> B
)
imasbas.r  |-  ( ph  ->  R  e.  Z )
imasmulr.p  |-  .x.  =  ( .r `  R )
imasmulr.t  |-  .xb  =  ( .r `  U )
Assertion
Ref Expression
imasmulr  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
Distinct variable groups:    F, p, q    R, p, q    V, p, q    ph, p, q
Allowed substitution hints:    B( q, p)    .xb ( q, p)    .x. ( q, p)    U( q, p)    Z( q, p)

Proof of Theorem imasmulr
StepHypRef Expression
1 imasmulr.t . 2  |-  .xb  =  ( .r `  U )
2 imasbas.u . . . . 5  |-  ( ph  ->  U  =  ( F 
"s  R ) )
3 imasbas.v . . . . 5  |-  ( ph  ->  V  =  ( Base `  R ) )
4 eqid 2229 . . . . 5  |-  ( +g  `  R )  =  ( +g  `  R )
5 imasmulr.p . . . . 5  |-  .x.  =  ( .r `  R )
6 eqid 2229 . . . . 5  |-  ( .s
`  R )  =  ( .s `  R
)
7 eqidd 2230 . . . . 5  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } )
8 eqidd 2230 . . . . 5  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } )
9 imasbas.f . . . . 5  |-  ( ph  ->  F : V -onto-> B
)
10 imasbas.r . . . . 5  |-  ( ph  ->  R  e.  Z )
112, 3, 4, 5, 6, 7, 8, 9, 10imasival 13334 . . . 4  |-  ( ph  ->  U  =  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. } )
1211fveq1d 5628 . . 3  |-  ( ph  ->  ( U `  ( .r `  ndx ) )  =  ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. } `
 ( .r `  ndx ) ) )
13 fof 5547 . . . . . . . 8  |-  ( F : V -onto-> B  ->  F : V --> B )
149, 13syl 14 . . . . . . 7  |-  ( ph  ->  F : V --> B )
15 basfn 13086 . . . . . . . . 9  |-  Base  Fn  _V
1610elexd 2813 . . . . . . . . 9  |-  ( ph  ->  R  e.  _V )
17 funfvex 5643 . . . . . . . . . 10  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1817funfni 5422 . . . . . . . . 9  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
1915, 16, 18sylancr 414 . . . . . . . 8  |-  ( ph  ->  ( Base `  R
)  e.  _V )
203, 19eqeltrd 2306 . . . . . . 7  |-  ( ph  ->  V  e.  _V )
2114, 20fexd 5868 . . . . . 6  |-  ( ph  ->  F  e.  _V )
22 imasex 13333 . . . . . 6  |-  ( ( F  e.  _V  /\  R  e.  Z )  ->  ( F  "s  R )  e.  _V )
2321, 10, 22syl2anc 411 . . . . 5  |-  ( ph  ->  ( F  "s  R )  e.  _V )
242, 23eqeltrd 2306 . . . 4  |-  ( ph  ->  U  e.  _V )
25 mulridx 13159 . . . 4  |-  .r  = Slot  ( .r `  ndx )
26 mulrslid 13160 . . . . 5  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
2726simpri 113 . . . 4  |-  ( .r
`  ndx )  e.  NN
2824, 25, 27strndxid 13055 . . 3  |-  ( ph  ->  ( U `  ( .r `  ndx ) )  =  ( .r `  U ) )
2927a1i 9 . . . 4  |-  ( ph  ->  ( .r `  ndx )  e.  NN )
30 vex 2802 . . . . . . . . . . . 12  |-  p  e. 
_V
31 fvexg 5645 . . . . . . . . . . . 12  |-  ( ( F  e.  _V  /\  p  e.  _V )  ->  ( F `  p
)  e.  _V )
3221, 30, 31sylancl 413 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  p
)  e.  _V )
33 vex 2802 . . . . . . . . . . . 12  |-  q  e. 
_V
34 fvexg 5645 . . . . . . . . . . . 12  |-  ( ( F  e.  _V  /\  q  e.  _V )  ->  ( F `  q
)  e.  _V )
3521, 33, 34sylancl 413 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  q
)  e.  _V )
36 opexg 4313 . . . . . . . . . . 11  |-  ( ( ( F `  p
)  e.  _V  /\  ( F `  q )  e.  _V )  ->  <. ( F `  p
) ,  ( F `
 q ) >.  e.  _V )
3732, 35, 36syl2anc 411 . . . . . . . . . 10  |-  ( ph  -> 
<. ( F `  p
) ,  ( F `
 q ) >.  e.  _V )
3826slotex 13054 . . . . . . . . . . . . . 14  |-  ( R  e.  Z  ->  ( .r `  R )  e. 
_V )
3910, 38syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  ( .r `  R
)  e.  _V )
405, 39eqeltrid 2316 . . . . . . . . . . . 12  |-  ( ph  ->  .x.  e.  _V )
4133a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  q  e.  _V )
42 ovexg 6034 . . . . . . . . . . . 12  |-  ( ( p  e.  _V  /\  .x. 
e.  _V  /\  q  e.  _V )  ->  (
p  .x.  q )  e.  _V )
4330, 40, 41, 42mp3an2i 1376 . . . . . . . . . . 11  |-  ( ph  ->  ( p  .x.  q
)  e.  _V )
44 fvexg 5645 . . . . . . . . . . 11  |-  ( ( F  e.  _V  /\  ( p  .x.  q )  e.  _V )  -> 
( F `  (
p  .x.  q )
)  e.  _V )
4521, 43, 44syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  ( F `  (
p  .x.  q )
)  e.  _V )
46 opexg 4313 . . . . . . . . . 10  |-  ( (
<. ( F `  p
) ,  ( F `
 q ) >.  e.  _V  /\  ( F `
 ( p  .x.  q ) )  e. 
_V )  ->  <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>.  e.  _V )
4737, 45, 46syl2anc 411 . . . . . . . . 9  |-  ( ph  -> 
<. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >.  e.  _V )
48 snexg 4267 . . . . . . . . 9  |-  ( <. <. ( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p  .x.  q ) ) >.  e.  _V  ->  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )
4947, 48syl 14 . . . . . . . 8  |-  ( ph  ->  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )
5049ralrimivw 2604 . . . . . . 7  |-  ( ph  ->  A. q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )
51 iunexg 6262 . . . . . . 7  |-  ( ( V  e.  _V  /\  A. q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )  ->  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. }  e.  _V )
5220, 50, 51syl2anc 411 . . . . . 6  |-  ( ph  ->  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )
5352ralrimivw 2604 . . . . 5  |-  ( ph  ->  A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )
54 iunexg 6262 . . . . 5  |-  ( ( V  e.  _V  /\  A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. }  e.  _V )
5520, 53, 54syl2anc 411 . . . 4  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )
56 basendxnmulrndx 13162 . . . . 5  |-  ( Base `  ndx )  =/=  ( .r `  ndx )
5756a1i 9 . . . 4  |-  ( ph  ->  ( Base `  ndx )  =/=  ( .r `  ndx ) )
58 plusgndxnmulrndx 13161 . . . . 5  |-  ( +g  ` 
ndx )  =/=  ( .r `  ndx )
5958a1i 9 . . . 4  |-  ( ph  ->  ( +g  `  ndx )  =/=  ( .r `  ndx ) )
60 fvtp3g 5848 . . . 4  |-  ( ( ( ( .r `  ndx )  e.  NN  /\ 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )  /\  (
( Base `  ndx )  =/=  ( .r `  ndx )  /\  ( +g  `  ndx )  =/=  ( .r `  ndx ) ) )  -> 
( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. } `
 ( .r `  ndx ) )  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
6129, 55, 57, 59, 60syl22anc 1272 . . 3  |-  ( ph  ->  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. } `
 ( .r `  ndx ) )  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
6212, 28, 613eqtr3rd 2271 . 2  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  =  ( .r `  U ) )
631, 62eqtr4id 2281 1  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200    =/= wne 2400   A.wral 2508   _Vcvv 2799   {csn 3666   {ctp 3668   <.cop 3669   U_ciun 3964    Fn wfn 5312   -->wf 5313   -onto->wfo 5315   ` cfv 5317  (class class class)co 6000   NNcn 9106   ndxcnx 13024  Slot cslot 13026   Basecbs 13027   +g cplusg 13105   .rcmulr 13106   .scvsca 13109    "s cimas 13327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-mulr 13119  df-iimas 13330
This theorem is referenced by:  imasmulfn  13348  imasmulval  13349  imasmulf  13350  qusmulval  13365  qusmulf  13366
  Copyright terms: Public domain W3C validator