ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasmulr Unicode version

Theorem imasmulr 13112
Description: The ring multiplication in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
imasbas.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasbas.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasbas.f  |-  ( ph  ->  F : V -onto-> B
)
imasbas.r  |-  ( ph  ->  R  e.  Z )
imasmulr.p  |-  .x.  =  ( .r `  R )
imasmulr.t  |-  .xb  =  ( .r `  U )
Assertion
Ref Expression
imasmulr  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
Distinct variable groups:    F, p, q    R, p, q    V, p, q    ph, p, q
Allowed substitution hints:    B( q, p)    .xb ( q, p)    .x. ( q, p)    U( q, p)    Z( q, p)

Proof of Theorem imasmulr
StepHypRef Expression
1 imasmulr.t . 2  |-  .xb  =  ( .r `  U )
2 imasbas.u . . . . 5  |-  ( ph  ->  U  =  ( F 
"s  R ) )
3 imasbas.v . . . . 5  |-  ( ph  ->  V  =  ( Base `  R ) )
4 eqid 2204 . . . . 5  |-  ( +g  `  R )  =  ( +g  `  R )
5 imasmulr.p . . . . 5  |-  .x.  =  ( .r `  R )
6 eqid 2204 . . . . 5  |-  ( .s
`  R )  =  ( .s `  R
)
7 eqidd 2205 . . . . 5  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } )
8 eqidd 2205 . . . . 5  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } )
9 imasbas.f . . . . 5  |-  ( ph  ->  F : V -onto-> B
)
10 imasbas.r . . . . 5  |-  ( ph  ->  R  e.  Z )
112, 3, 4, 5, 6, 7, 8, 9, 10imasival 13109 . . . 4  |-  ( ph  ->  U  =  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. } )
1211fveq1d 5577 . . 3  |-  ( ph  ->  ( U `  ( .r `  ndx ) )  =  ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. } `
 ( .r `  ndx ) ) )
13 fof 5497 . . . . . . . 8  |-  ( F : V -onto-> B  ->  F : V --> B )
149, 13syl 14 . . . . . . 7  |-  ( ph  ->  F : V --> B )
15 basfn 12861 . . . . . . . . 9  |-  Base  Fn  _V
1610elexd 2784 . . . . . . . . 9  |-  ( ph  ->  R  e.  _V )
17 funfvex 5592 . . . . . . . . . 10  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1817funfni 5375 . . . . . . . . 9  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
1915, 16, 18sylancr 414 . . . . . . . 8  |-  ( ph  ->  ( Base `  R
)  e.  _V )
203, 19eqeltrd 2281 . . . . . . 7  |-  ( ph  ->  V  e.  _V )
2114, 20fexd 5813 . . . . . 6  |-  ( ph  ->  F  e.  _V )
22 imasex 13108 . . . . . 6  |-  ( ( F  e.  _V  /\  R  e.  Z )  ->  ( F  "s  R )  e.  _V )
2321, 10, 22syl2anc 411 . . . . 5  |-  ( ph  ->  ( F  "s  R )  e.  _V )
242, 23eqeltrd 2281 . . . 4  |-  ( ph  ->  U  e.  _V )
25 mulridx 12934 . . . 4  |-  .r  = Slot  ( .r `  ndx )
26 mulrslid 12935 . . . . 5  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
2726simpri 113 . . . 4  |-  ( .r
`  ndx )  e.  NN
2824, 25, 27strndxid 12831 . . 3  |-  ( ph  ->  ( U `  ( .r `  ndx ) )  =  ( .r `  U ) )
2927a1i 9 . . . 4  |-  ( ph  ->  ( .r `  ndx )  e.  NN )
30 vex 2774 . . . . . . . . . . . 12  |-  p  e. 
_V
31 fvexg 5594 . . . . . . . . . . . 12  |-  ( ( F  e.  _V  /\  p  e.  _V )  ->  ( F `  p
)  e.  _V )
3221, 30, 31sylancl 413 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  p
)  e.  _V )
33 vex 2774 . . . . . . . . . . . 12  |-  q  e. 
_V
34 fvexg 5594 . . . . . . . . . . . 12  |-  ( ( F  e.  _V  /\  q  e.  _V )  ->  ( F `  q
)  e.  _V )
3521, 33, 34sylancl 413 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  q
)  e.  _V )
36 opexg 4271 . . . . . . . . . . 11  |-  ( ( ( F `  p
)  e.  _V  /\  ( F `  q )  e.  _V )  ->  <. ( F `  p
) ,  ( F `
 q ) >.  e.  _V )
3732, 35, 36syl2anc 411 . . . . . . . . . 10  |-  ( ph  -> 
<. ( F `  p
) ,  ( F `
 q ) >.  e.  _V )
3826slotex 12830 . . . . . . . . . . . . . 14  |-  ( R  e.  Z  ->  ( .r `  R )  e. 
_V )
3910, 38syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  ( .r `  R
)  e.  _V )
405, 39eqeltrid 2291 . . . . . . . . . . . 12  |-  ( ph  ->  .x.  e.  _V )
4133a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  q  e.  _V )
42 ovexg 5977 . . . . . . . . . . . 12  |-  ( ( p  e.  _V  /\  .x. 
e.  _V  /\  q  e.  _V )  ->  (
p  .x.  q )  e.  _V )
4330, 40, 41, 42mp3an2i 1354 . . . . . . . . . . 11  |-  ( ph  ->  ( p  .x.  q
)  e.  _V )
44 fvexg 5594 . . . . . . . . . . 11  |-  ( ( F  e.  _V  /\  ( p  .x.  q )  e.  _V )  -> 
( F `  (
p  .x.  q )
)  e.  _V )
4521, 43, 44syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  ( F `  (
p  .x.  q )
)  e.  _V )
46 opexg 4271 . . . . . . . . . 10  |-  ( (
<. ( F `  p
) ,  ( F `
 q ) >.  e.  _V  /\  ( F `
 ( p  .x.  q ) )  e. 
_V )  ->  <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>.  e.  _V )
4737, 45, 46syl2anc 411 . . . . . . . . 9  |-  ( ph  -> 
<. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >.  e.  _V )
48 snexg 4227 . . . . . . . . 9  |-  ( <. <. ( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p  .x.  q ) ) >.  e.  _V  ->  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )
4947, 48syl 14 . . . . . . . 8  |-  ( ph  ->  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )
5049ralrimivw 2579 . . . . . . 7  |-  ( ph  ->  A. q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )
51 iunexg 6203 . . . . . . 7  |-  ( ( V  e.  _V  /\  A. q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )  ->  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. }  e.  _V )
5220, 50, 51syl2anc 411 . . . . . 6  |-  ( ph  ->  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )
5352ralrimivw 2579 . . . . 5  |-  ( ph  ->  A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )
54 iunexg 6203 . . . . 5  |-  ( ( V  e.  _V  /\  A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. }  e.  _V )
5520, 53, 54syl2anc 411 . . . 4  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )
56 basendxnmulrndx 12937 . . . . 5  |-  ( Base `  ndx )  =/=  ( .r `  ndx )
5756a1i 9 . . . 4  |-  ( ph  ->  ( Base `  ndx )  =/=  ( .r `  ndx ) )
58 plusgndxnmulrndx 12936 . . . . 5  |-  ( +g  ` 
ndx )  =/=  ( .r `  ndx )
5958a1i 9 . . . 4  |-  ( ph  ->  ( +g  `  ndx )  =/=  ( .r `  ndx ) )
60 fvtp3g 5793 . . . 4  |-  ( ( ( ( .r `  ndx )  e.  NN  /\ 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )  /\  (
( Base `  ndx )  =/=  ( .r `  ndx )  /\  ( +g  `  ndx )  =/=  ( .r `  ndx ) ) )  -> 
( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. } `
 ( .r `  ndx ) )  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
6129, 55, 57, 59, 60syl22anc 1250 . . 3  |-  ( ph  ->  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. } `
 ( .r `  ndx ) )  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
6212, 28, 613eqtr3rd 2246 . 2  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  =  ( .r `  U ) )
631, 62eqtr4id 2256 1  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175    =/= wne 2375   A.wral 2483   _Vcvv 2771   {csn 3632   {ctp 3634   <.cop 3635   U_ciun 3926    Fn wfn 5265   -->wf 5266   -onto->wfo 5268   ` cfv 5270  (class class class)co 5943   NNcn 9035   ndxcnx 12800  Slot cslot 12802   Basecbs 12803   +g cplusg 12880   .rcmulr 12881   .scvsca 12884    "s cimas 13102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-tp 3640  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12806  df-slot 12807  df-base 12809  df-plusg 12893  df-mulr 12894  df-iimas 13105
This theorem is referenced by:  imasmulfn  13123  imasmulval  13124  imasmulf  13125  qusmulval  13140  qusmulf  13141
  Copyright terms: Public domain W3C validator