| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > imasmulr | Unicode version | ||
| Description: The ring multiplication in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) | 
| Ref | Expression | 
|---|---|
| imasbas.u | 
 | 
| imasbas.v | 
 | 
| imasbas.f | 
 | 
| imasbas.r | 
 | 
| imasmulr.p | 
 | 
| imasmulr.t | 
 | 
| Ref | Expression | 
|---|---|
| imasmulr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imasmulr.t | 
. 2
 | |
| 2 | imasbas.u | 
. . . . 5
 | |
| 3 | imasbas.v | 
. . . . 5
 | |
| 4 | eqid 2196 | 
. . . . 5
 | |
| 5 | imasmulr.p | 
. . . . 5
 | |
| 6 | eqid 2196 | 
. . . . 5
 | |
| 7 | eqidd 2197 | 
. . . . 5
 | |
| 8 | eqidd 2197 | 
. . . . 5
 | |
| 9 | imasbas.f | 
. . . . 5
 | |
| 10 | imasbas.r | 
. . . . 5
 | |
| 11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | imasival 12949 | 
. . . 4
 | 
| 12 | 11 | fveq1d 5560 | 
. . 3
 | 
| 13 | fof 5480 | 
. . . . . . . 8
 | |
| 14 | 9, 13 | syl 14 | 
. . . . . . 7
 | 
| 15 | basfn 12736 | 
. . . . . . . . 9
 | |
| 16 | 10 | elexd 2776 | 
. . . . . . . . 9
 | 
| 17 | funfvex 5575 | 
. . . . . . . . . 10
 | |
| 18 | 17 | funfni 5358 | 
. . . . . . . . 9
 | 
| 19 | 15, 16, 18 | sylancr 414 | 
. . . . . . . 8
 | 
| 20 | 3, 19 | eqeltrd 2273 | 
. . . . . . 7
 | 
| 21 | 14, 20 | fexd 5792 | 
. . . . . 6
 | 
| 22 | imasex 12948 | 
. . . . . 6
 | |
| 23 | 21, 10, 22 | syl2anc 411 | 
. . . . 5
 | 
| 24 | 2, 23 | eqeltrd 2273 | 
. . . 4
 | 
| 25 | mulridx 12808 | 
. . . 4
 | |
| 26 | mulrslid 12809 | 
. . . . 5
 | |
| 27 | 26 | simpri 113 | 
. . . 4
 | 
| 28 | 24, 25, 27 | strndxid 12706 | 
. . 3
 | 
| 29 | 27 | a1i 9 | 
. . . 4
 | 
| 30 | vex 2766 | 
. . . . . . . . . . . 12
 | |
| 31 | fvexg 5577 | 
. . . . . . . . . . . 12
 | |
| 32 | 21, 30, 31 | sylancl 413 | 
. . . . . . . . . . 11
 | 
| 33 | vex 2766 | 
. . . . . . . . . . . 12
 | |
| 34 | fvexg 5577 | 
. . . . . . . . . . . 12
 | |
| 35 | 21, 33, 34 | sylancl 413 | 
. . . . . . . . . . 11
 | 
| 36 | opexg 4261 | 
. . . . . . . . . . 11
 | |
| 37 | 32, 35, 36 | syl2anc 411 | 
. . . . . . . . . 10
 | 
| 38 | 26 | slotex 12705 | 
. . . . . . . . . . . . . 14
 | 
| 39 | 10, 38 | syl 14 | 
. . . . . . . . . . . . 13
 | 
| 40 | 5, 39 | eqeltrid 2283 | 
. . . . . . . . . . . 12
 | 
| 41 | 33 | a1i 9 | 
. . . . . . . . . . . 12
 | 
| 42 | ovexg 5956 | 
. . . . . . . . . . . 12
 | |
| 43 | 30, 40, 41, 42 | mp3an2i 1353 | 
. . . . . . . . . . 11
 | 
| 44 | fvexg 5577 | 
. . . . . . . . . . 11
 | |
| 45 | 21, 43, 44 | syl2anc 411 | 
. . . . . . . . . 10
 | 
| 46 | opexg 4261 | 
. . . . . . . . . 10
 | |
| 47 | 37, 45, 46 | syl2anc 411 | 
. . . . . . . . 9
 | 
| 48 | snexg 4217 | 
. . . . . . . . 9
 | |
| 49 | 47, 48 | syl 14 | 
. . . . . . . 8
 | 
| 50 | 49 | ralrimivw 2571 | 
. . . . . . 7
 | 
| 51 | iunexg 6176 | 
. . . . . . 7
 | |
| 52 | 20, 50, 51 | syl2anc 411 | 
. . . . . 6
 | 
| 53 | 52 | ralrimivw 2571 | 
. . . . 5
 | 
| 54 | iunexg 6176 | 
. . . . 5
 | |
| 55 | 20, 53, 54 | syl2anc 411 | 
. . . 4
 | 
| 56 | basendxnmulrndx 12811 | 
. . . . 5
 | |
| 57 | 56 | a1i 9 | 
. . . 4
 | 
| 58 | plusgndxnmulrndx 12810 | 
. . . . 5
 | |
| 59 | 58 | a1i 9 | 
. . . 4
 | 
| 60 | fvtp3g 5772 | 
. . . 4
 | |
| 61 | 29, 55, 57, 59, 60 | syl22anc 1250 | 
. . 3
 | 
| 62 | 12, 28, 61 | 3eqtr3rd 2238 | 
. 2
 | 
| 63 | 1, 62 | eqtr4id 2248 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-mulr 12769 df-iimas 12945 | 
| This theorem is referenced by: imasmulfn 12963 imasmulval 12964 imasmulf 12965 qusmulval 12980 qusmulf 12981 | 
| Copyright terms: Public domain | W3C validator |