| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imasmulr | Unicode version | ||
| Description: The ring multiplication in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| Ref | Expression |
|---|---|
| imasbas.u |
|
| imasbas.v |
|
| imasbas.f |
|
| imasbas.r |
|
| imasmulr.p |
|
| imasmulr.t |
|
| Ref | Expression |
|---|---|
| imasmulr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasmulr.t |
. 2
| |
| 2 | imasbas.u |
. . . . 5
| |
| 3 | imasbas.v |
. . . . 5
| |
| 4 | eqid 2229 |
. . . . 5
| |
| 5 | imasmulr.p |
. . . . 5
| |
| 6 | eqid 2229 |
. . . . 5
| |
| 7 | eqidd 2230 |
. . . . 5
| |
| 8 | eqidd 2230 |
. . . . 5
| |
| 9 | imasbas.f |
. . . . 5
| |
| 10 | imasbas.r |
. . . . 5
| |
| 11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | imasival 13334 |
. . . 4
|
| 12 | 11 | fveq1d 5628 |
. . 3
|
| 13 | fof 5547 |
. . . . . . . 8
| |
| 14 | 9, 13 | syl 14 |
. . . . . . 7
|
| 15 | basfn 13086 |
. . . . . . . . 9
| |
| 16 | 10 | elexd 2813 |
. . . . . . . . 9
|
| 17 | funfvex 5643 |
. . . . . . . . . 10
| |
| 18 | 17 | funfni 5422 |
. . . . . . . . 9
|
| 19 | 15, 16, 18 | sylancr 414 |
. . . . . . . 8
|
| 20 | 3, 19 | eqeltrd 2306 |
. . . . . . 7
|
| 21 | 14, 20 | fexd 5868 |
. . . . . 6
|
| 22 | imasex 13333 |
. . . . . 6
| |
| 23 | 21, 10, 22 | syl2anc 411 |
. . . . 5
|
| 24 | 2, 23 | eqeltrd 2306 |
. . . 4
|
| 25 | mulridx 13159 |
. . . 4
| |
| 26 | mulrslid 13160 |
. . . . 5
| |
| 27 | 26 | simpri 113 |
. . . 4
|
| 28 | 24, 25, 27 | strndxid 13055 |
. . 3
|
| 29 | 27 | a1i 9 |
. . . 4
|
| 30 | vex 2802 |
. . . . . . . . . . . 12
| |
| 31 | fvexg 5645 |
. . . . . . . . . . . 12
| |
| 32 | 21, 30, 31 | sylancl 413 |
. . . . . . . . . . 11
|
| 33 | vex 2802 |
. . . . . . . . . . . 12
| |
| 34 | fvexg 5645 |
. . . . . . . . . . . 12
| |
| 35 | 21, 33, 34 | sylancl 413 |
. . . . . . . . . . 11
|
| 36 | opexg 4313 |
. . . . . . . . . . 11
| |
| 37 | 32, 35, 36 | syl2anc 411 |
. . . . . . . . . 10
|
| 38 | 26 | slotex 13054 |
. . . . . . . . . . . . . 14
|
| 39 | 10, 38 | syl 14 |
. . . . . . . . . . . . 13
|
| 40 | 5, 39 | eqeltrid 2316 |
. . . . . . . . . . . 12
|
| 41 | 33 | a1i 9 |
. . . . . . . . . . . 12
|
| 42 | ovexg 6034 |
. . . . . . . . . . . 12
| |
| 43 | 30, 40, 41, 42 | mp3an2i 1376 |
. . . . . . . . . . 11
|
| 44 | fvexg 5645 |
. . . . . . . . . . 11
| |
| 45 | 21, 43, 44 | syl2anc 411 |
. . . . . . . . . 10
|
| 46 | opexg 4313 |
. . . . . . . . . 10
| |
| 47 | 37, 45, 46 | syl2anc 411 |
. . . . . . . . 9
|
| 48 | snexg 4267 |
. . . . . . . . 9
| |
| 49 | 47, 48 | syl 14 |
. . . . . . . 8
|
| 50 | 49 | ralrimivw 2604 |
. . . . . . 7
|
| 51 | iunexg 6262 |
. . . . . . 7
| |
| 52 | 20, 50, 51 | syl2anc 411 |
. . . . . 6
|
| 53 | 52 | ralrimivw 2604 |
. . . . 5
|
| 54 | iunexg 6262 |
. . . . 5
| |
| 55 | 20, 53, 54 | syl2anc 411 |
. . . 4
|
| 56 | basendxnmulrndx 13162 |
. . . . 5
| |
| 57 | 56 | a1i 9 |
. . . 4
|
| 58 | plusgndxnmulrndx 13161 |
. . . . 5
| |
| 59 | 58 | a1i 9 |
. . . 4
|
| 60 | fvtp3g 5848 |
. . . 4
| |
| 61 | 29, 55, 57, 59, 60 | syl22anc 1272 |
. . 3
|
| 62 | 12, 28, 61 | 3eqtr3rd 2271 |
. 2
|
| 63 | 1, 62 | eqtr4id 2281 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-inn 9107 df-2 9165 df-3 9166 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-mulr 13119 df-iimas 13330 |
| This theorem is referenced by: imasmulfn 13348 imasmulval 13349 imasmulf 13350 qusmulval 13365 qusmulf 13366 |
| Copyright terms: Public domain | W3C validator |