ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasmulr Unicode version

Theorem imasmulr 13226
Description: The ring multiplication in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
imasbas.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasbas.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasbas.f  |-  ( ph  ->  F : V -onto-> B
)
imasbas.r  |-  ( ph  ->  R  e.  Z )
imasmulr.p  |-  .x.  =  ( .r `  R )
imasmulr.t  |-  .xb  =  ( .r `  U )
Assertion
Ref Expression
imasmulr  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
Distinct variable groups:    F, p, q    R, p, q    V, p, q    ph, p, q
Allowed substitution hints:    B( q, p)    .xb ( q, p)    .x. ( q, p)    U( q, p)    Z( q, p)

Proof of Theorem imasmulr
StepHypRef Expression
1 imasmulr.t . 2  |-  .xb  =  ( .r `  U )
2 imasbas.u . . . . 5  |-  ( ph  ->  U  =  ( F 
"s  R ) )
3 imasbas.v . . . . 5  |-  ( ph  ->  V  =  ( Base `  R ) )
4 eqid 2206 . . . . 5  |-  ( +g  `  R )  =  ( +g  `  R )
5 imasmulr.p . . . . 5  |-  .x.  =  ( .r `  R )
6 eqid 2206 . . . . 5  |-  ( .s
`  R )  =  ( .s `  R
)
7 eqidd 2207 . . . . 5  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } )
8 eqidd 2207 . . . . 5  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } )
9 imasbas.f . . . . 5  |-  ( ph  ->  F : V -onto-> B
)
10 imasbas.r . . . . 5  |-  ( ph  ->  R  e.  Z )
112, 3, 4, 5, 6, 7, 8, 9, 10imasival 13223 . . . 4  |-  ( ph  ->  U  =  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. } )
1211fveq1d 5596 . . 3  |-  ( ph  ->  ( U `  ( .r `  ndx ) )  =  ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. } `
 ( .r `  ndx ) ) )
13 fof 5515 . . . . . . . 8  |-  ( F : V -onto-> B  ->  F : V --> B )
149, 13syl 14 . . . . . . 7  |-  ( ph  ->  F : V --> B )
15 basfn 12975 . . . . . . . . 9  |-  Base  Fn  _V
1610elexd 2787 . . . . . . . . 9  |-  ( ph  ->  R  e.  _V )
17 funfvex 5611 . . . . . . . . . 10  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1817funfni 5390 . . . . . . . . 9  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
1915, 16, 18sylancr 414 . . . . . . . 8  |-  ( ph  ->  ( Base `  R
)  e.  _V )
203, 19eqeltrd 2283 . . . . . . 7  |-  ( ph  ->  V  e.  _V )
2114, 20fexd 5832 . . . . . 6  |-  ( ph  ->  F  e.  _V )
22 imasex 13222 . . . . . 6  |-  ( ( F  e.  _V  /\  R  e.  Z )  ->  ( F  "s  R )  e.  _V )
2321, 10, 22syl2anc 411 . . . . 5  |-  ( ph  ->  ( F  "s  R )  e.  _V )
242, 23eqeltrd 2283 . . . 4  |-  ( ph  ->  U  e.  _V )
25 mulridx 13048 . . . 4  |-  .r  = Slot  ( .r `  ndx )
26 mulrslid 13049 . . . . 5  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
2726simpri 113 . . . 4  |-  ( .r
`  ndx )  e.  NN
2824, 25, 27strndxid 12945 . . 3  |-  ( ph  ->  ( U `  ( .r `  ndx ) )  =  ( .r `  U ) )
2927a1i 9 . . . 4  |-  ( ph  ->  ( .r `  ndx )  e.  NN )
30 vex 2776 . . . . . . . . . . . 12  |-  p  e. 
_V
31 fvexg 5613 . . . . . . . . . . . 12  |-  ( ( F  e.  _V  /\  p  e.  _V )  ->  ( F `  p
)  e.  _V )
3221, 30, 31sylancl 413 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  p
)  e.  _V )
33 vex 2776 . . . . . . . . . . . 12  |-  q  e. 
_V
34 fvexg 5613 . . . . . . . . . . . 12  |-  ( ( F  e.  _V  /\  q  e.  _V )  ->  ( F `  q
)  e.  _V )
3521, 33, 34sylancl 413 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  q
)  e.  _V )
36 opexg 4285 . . . . . . . . . . 11  |-  ( ( ( F `  p
)  e.  _V  /\  ( F `  q )  e.  _V )  ->  <. ( F `  p
) ,  ( F `
 q ) >.  e.  _V )
3732, 35, 36syl2anc 411 . . . . . . . . . 10  |-  ( ph  -> 
<. ( F `  p
) ,  ( F `
 q ) >.  e.  _V )
3826slotex 12944 . . . . . . . . . . . . . 14  |-  ( R  e.  Z  ->  ( .r `  R )  e. 
_V )
3910, 38syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  ( .r `  R
)  e.  _V )
405, 39eqeltrid 2293 . . . . . . . . . . . 12  |-  ( ph  ->  .x.  e.  _V )
4133a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  q  e.  _V )
42 ovexg 5996 . . . . . . . . . . . 12  |-  ( ( p  e.  _V  /\  .x. 
e.  _V  /\  q  e.  _V )  ->  (
p  .x.  q )  e.  _V )
4330, 40, 41, 42mp3an2i 1355 . . . . . . . . . . 11  |-  ( ph  ->  ( p  .x.  q
)  e.  _V )
44 fvexg 5613 . . . . . . . . . . 11  |-  ( ( F  e.  _V  /\  ( p  .x.  q )  e.  _V )  -> 
( F `  (
p  .x.  q )
)  e.  _V )
4521, 43, 44syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  ( F `  (
p  .x.  q )
)  e.  _V )
46 opexg 4285 . . . . . . . . . 10  |-  ( (
<. ( F `  p
) ,  ( F `
 q ) >.  e.  _V  /\  ( F `
 ( p  .x.  q ) )  e. 
_V )  ->  <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>.  e.  _V )
4737, 45, 46syl2anc 411 . . . . . . . . 9  |-  ( ph  -> 
<. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >.  e.  _V )
48 snexg 4239 . . . . . . . . 9  |-  ( <. <. ( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p  .x.  q ) ) >.  e.  _V  ->  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )
4947, 48syl 14 . . . . . . . 8  |-  ( ph  ->  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )
5049ralrimivw 2581 . . . . . . 7  |-  ( ph  ->  A. q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )
51 iunexg 6222 . . . . . . 7  |-  ( ( V  e.  _V  /\  A. q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )  ->  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. }  e.  _V )
5220, 50, 51syl2anc 411 . . . . . 6  |-  ( ph  ->  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )
5352ralrimivw 2581 . . . . 5  |-  ( ph  ->  A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )
54 iunexg 6222 . . . . 5  |-  ( ( V  e.  _V  /\  A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. }  e.  _V )
5520, 53, 54syl2anc 411 . . . 4  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )
56 basendxnmulrndx 13051 . . . . 5  |-  ( Base `  ndx )  =/=  ( .r `  ndx )
5756a1i 9 . . . 4  |-  ( ph  ->  ( Base `  ndx )  =/=  ( .r `  ndx ) )
58 plusgndxnmulrndx 13050 . . . . 5  |-  ( +g  ` 
ndx )  =/=  ( .r `  ndx )
5958a1i 9 . . . 4  |-  ( ph  ->  ( +g  `  ndx )  =/=  ( .r `  ndx ) )
60 fvtp3g 5812 . . . 4  |-  ( ( ( ( .r `  ndx )  e.  NN  /\ 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )  /\  (
( Base `  ndx )  =/=  ( .r `  ndx )  /\  ( +g  `  ndx )  =/=  ( .r `  ndx ) ) )  -> 
( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. } `
 ( .r `  ndx ) )  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
6129, 55, 57, 59, 60syl22anc 1251 . . 3  |-  ( ph  ->  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. } `
 ( .r `  ndx ) )  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
6212, 28, 613eqtr3rd 2248 . 2  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  =  ( .r `  U ) )
631, 62eqtr4id 2258 1  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177    =/= wne 2377   A.wral 2485   _Vcvv 2773   {csn 3638   {ctp 3640   <.cop 3641   U_ciun 3936    Fn wfn 5280   -->wf 5281   -onto->wfo 5283   ` cfv 5285  (class class class)co 5962   NNcn 9066   ndxcnx 12914  Slot cslot 12916   Basecbs 12917   +g cplusg 12994   .rcmulr 12995   .scvsca 12998    "s cimas 13216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-pre-ltirr 8067  ax-pre-lttrn 8069  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-tp 3646  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-ov 5965  df-oprab 5966  df-mpo 5967  df-pnf 8139  df-mnf 8140  df-ltxr 8142  df-inn 9067  df-2 9125  df-3 9126  df-ndx 12920  df-slot 12921  df-base 12923  df-plusg 13007  df-mulr 13008  df-iimas 13219
This theorem is referenced by:  imasmulfn  13237  imasmulval  13238  imasmulf  13239  qusmulval  13254  qusmulf  13255
  Copyright terms: Public domain W3C validator