ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasmulr Unicode version

Theorem imasmulr 12735
Description: The ring multiplication in an image structure. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 11-Jul-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
Hypotheses
Ref Expression
imasbas.u  |-  ( ph  ->  U  =  ( F 
"s  R ) )
imasbas.v  |-  ( ph  ->  V  =  ( Base `  R ) )
imasbas.f  |-  ( ph  ->  F : V -onto-> B
)
imasbas.r  |-  ( ph  ->  R  e.  Z )
imasmulr.p  |-  .x.  =  ( .r `  R )
imasmulr.t  |-  .xb  =  ( .r `  U )
Assertion
Ref Expression
imasmulr  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
Distinct variable groups:    F, p, q    R, p, q    V, p, q    ph, p, q
Allowed substitution hints:    B( q, p)    .xb ( q, p)    .x. ( q, p)    U( q, p)    Z( q, p)

Proof of Theorem imasmulr
StepHypRef Expression
1 imasmulr.t . 2  |-  .xb  =  ( .r `  U )
2 imasbas.u . . . . 5  |-  ( ph  ->  U  =  ( F 
"s  R ) )
3 imasbas.v . . . . 5  |-  ( ph  ->  V  =  ( Base `  R ) )
4 eqid 2177 . . . . 5  |-  ( +g  `  R )  =  ( +g  `  R )
5 imasmulr.p . . . . 5  |-  .x.  =  ( .r `  R )
6 eqid 2177 . . . . 5  |-  ( .s
`  R )  =  ( .s `  R
)
7 eqidd 2178 . . . . 5  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p ( +g  `  R
) q ) )
>. } )
8 eqidd 2178 . . . . 5  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } )
9 imasbas.f . . . . 5  |-  ( ph  ->  F : V -onto-> B
)
10 imasbas.r . . . . 5  |-  ( ph  ->  R  e.  Z )
112, 3, 4, 5, 6, 7, 8, 9, 10imasival 12732 . . . 4  |-  ( ph  ->  U  =  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. } )
1211fveq1d 5519 . . 3  |-  ( ph  ->  ( U `  ( .r `  ndx ) )  =  ( { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. } `
 ( .r `  ndx ) ) )
13 fof 5440 . . . . . . . 8  |-  ( F : V -onto-> B  ->  F : V --> B )
149, 13syl 14 . . . . . . 7  |-  ( ph  ->  F : V --> B )
15 basfn 12522 . . . . . . . . 9  |-  Base  Fn  _V
1610elexd 2752 . . . . . . . . 9  |-  ( ph  ->  R  e.  _V )
17 funfvex 5534 . . . . . . . . . 10  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
1817funfni 5318 . . . . . . . . 9  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
1915, 16, 18sylancr 414 . . . . . . . 8  |-  ( ph  ->  ( Base `  R
)  e.  _V )
203, 19eqeltrd 2254 . . . . . . 7  |-  ( ph  ->  V  e.  _V )
2114, 20fexd 5748 . . . . . 6  |-  ( ph  ->  F  e.  _V )
22 imasex 12731 . . . . . 6  |-  ( ( F  e.  _V  /\  R  e.  Z )  ->  ( F  "s  R )  e.  _V )
2321, 10, 22syl2anc 411 . . . . 5  |-  ( ph  ->  ( F  "s  R )  e.  _V )
242, 23eqeltrd 2254 . . . 4  |-  ( ph  ->  U  e.  _V )
25 mulridx 12591 . . . 4  |-  .r  = Slot  ( .r `  ndx )
26 mulrslid 12592 . . . . 5  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
2726simpri 113 . . . 4  |-  ( .r
`  ndx )  e.  NN
2824, 25, 27strndxid 12492 . . 3  |-  ( ph  ->  ( U `  ( .r `  ndx ) )  =  ( .r `  U ) )
2927a1i 9 . . . 4  |-  ( ph  ->  ( .r `  ndx )  e.  NN )
30 vex 2742 . . . . . . . . . . . 12  |-  p  e. 
_V
31 fvexg 5536 . . . . . . . . . . . 12  |-  ( ( F  e.  _V  /\  p  e.  _V )  ->  ( F `  p
)  e.  _V )
3221, 30, 31sylancl 413 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  p
)  e.  _V )
33 vex 2742 . . . . . . . . . . . 12  |-  q  e. 
_V
34 fvexg 5536 . . . . . . . . . . . 12  |-  ( ( F  e.  _V  /\  q  e.  _V )  ->  ( F `  q
)  e.  _V )
3521, 33, 34sylancl 413 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  q
)  e.  _V )
36 opexg 4230 . . . . . . . . . . 11  |-  ( ( ( F `  p
)  e.  _V  /\  ( F `  q )  e.  _V )  ->  <. ( F `  p
) ,  ( F `
 q ) >.  e.  _V )
3732, 35, 36syl2anc 411 . . . . . . . . . 10  |-  ( ph  -> 
<. ( F `  p
) ,  ( F `
 q ) >.  e.  _V )
3826slotex 12491 . . . . . . . . . . . . . 14  |-  ( R  e.  Z  ->  ( .r `  R )  e. 
_V )
3910, 38syl 14 . . . . . . . . . . . . 13  |-  ( ph  ->  ( .r `  R
)  e.  _V )
405, 39eqeltrid 2264 . . . . . . . . . . . 12  |-  ( ph  ->  .x.  e.  _V )
4133a1i 9 . . . . . . . . . . . 12  |-  ( ph  ->  q  e.  _V )
42 ovexg 5911 . . . . . . . . . . . 12  |-  ( ( p  e.  _V  /\  .x. 
e.  _V  /\  q  e.  _V )  ->  (
p  .x.  q )  e.  _V )
4330, 40, 41, 42mp3an2i 1342 . . . . . . . . . . 11  |-  ( ph  ->  ( p  .x.  q
)  e.  _V )
44 fvexg 5536 . . . . . . . . . . 11  |-  ( ( F  e.  _V  /\  ( p  .x.  q )  e.  _V )  -> 
( F `  (
p  .x.  q )
)  e.  _V )
4521, 43, 44syl2anc 411 . . . . . . . . . 10  |-  ( ph  ->  ( F `  (
p  .x.  q )
)  e.  _V )
46 opexg 4230 . . . . . . . . . 10  |-  ( (
<. ( F `  p
) ,  ( F `
 q ) >.  e.  _V  /\  ( F `
 ( p  .x.  q ) )  e. 
_V )  ->  <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>.  e.  _V )
4737, 45, 46syl2anc 411 . . . . . . . . 9  |-  ( ph  -> 
<. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >.  e.  _V )
48 snexg 4186 . . . . . . . . 9  |-  ( <. <. ( F `  p
) ,  ( F `
 q ) >. ,  ( F `  ( p  .x.  q ) ) >.  e.  _V  ->  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )
4947, 48syl 14 . . . . . . . 8  |-  ( ph  ->  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )
5049ralrimivw 2551 . . . . . . 7  |-  ( ph  ->  A. q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )
51 iunexg 6122 . . . . . . 7  |-  ( ( V  e.  _V  /\  A. q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )  ->  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. }  e.  _V )
5220, 50, 51syl2anc 411 . . . . . 6  |-  ( ph  ->  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )
5352ralrimivw 2551 . . . . 5  |-  ( ph  ->  A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )
54 iunexg 6122 . . . . 5  |-  ( ( V  e.  _V  /\  A. p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. }  e.  _V )
5520, 53, 54syl2anc 411 . . . 4  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )
56 basendxnmulrndx 12594 . . . . 5  |-  ( Base `  ndx )  =/=  ( .r `  ndx )
5756a1i 9 . . . 4  |-  ( ph  ->  ( Base `  ndx )  =/=  ( .r `  ndx ) )
58 plusgndxnmulrndx 12593 . . . . 5  |-  ( +g  ` 
ndx )  =/=  ( .r `  ndx )
5958a1i 9 . . . 4  |-  ( ph  ->  ( +g  `  ndx )  =/=  ( .r `  ndx ) )
60 fvtp3g 5728 . . . 4  |-  ( ( ( ( .r `  ndx )  e.  NN  /\ 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  e.  _V )  /\  (
( Base `  ndx )  =/=  ( .r `  ndx )  /\  ( +g  `  ndx )  =/=  ( .r `  ndx ) ) )  -> 
( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. } `
 ( .r `  ndx ) )  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
6129, 55, 57, 59, 60syl22anc 1239 . . 3  |-  ( ph  ->  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p ( +g  `  R ) q ) ) >. } >. ,  <. ( .r `  ndx ) ,  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. } >. } `
 ( .r `  ndx ) )  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
6212, 28, 613eqtr3rd 2219 . 2  |-  ( ph  ->  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q )
>. ,  ( F `  ( p  .x.  q
) ) >. }  =  ( .r `  U ) )
631, 62eqtr4id 2229 1  |-  ( ph  -> 
.xb  =  U_ p  e.  V  U_ q  e.  V  { <. <. ( F `  p ) ,  ( F `  q ) >. ,  ( F `  ( p 
.x.  q ) )
>. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2148    =/= wne 2347   A.wral 2455   _Vcvv 2739   {csn 3594   {ctp 3596   <.cop 3597   U_ciun 3888    Fn wfn 5213   -->wf 5214   -onto->wfo 5216   ` cfv 5218  (class class class)co 5877   NNcn 8921   ndxcnx 12461  Slot cslot 12463   Basecbs 12464   +g cplusg 12538   .rcmulr 12539   .scvsca 12542    "s cimas 12725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-tp 3602  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-3 8981  df-ndx 12467  df-slot 12468  df-base 12470  df-plusg 12551  df-mulr 12552  df-iimas 12728
This theorem is referenced by:  imasmulfn  12746  imasmulval  12747  imasmulf  12748  qusmulval  12761  qusmulf  12762
  Copyright terms: Public domain W3C validator