| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1fveq | Unicode version | ||
| Description: Equality of function values for a one-to-one function. (Contributed by NM, 11-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1fveq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1veqaeq 5893 |
. 2
| |
| 2 | fveq2 5627 |
. 2
| |
| 3 | 1, 2 | impbid1 142 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fv 5326 |
| This theorem is referenced by: f1elima 5897 cocan1 5911 f1oiso 5950 2dom 6958 xpdom2 6990 en2eqpr 7069 isotilem 7173 frec2uzled 10651 seqf1oglem1 10741 hashen 11006 eulerthlemh 12753 f1ocpbllem 13343 f1ovscpbl 13345 relogef 15538 usgredg2v 16022 iswomninnlem 16417 |
| Copyright terms: Public domain | W3C validator |