ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1fveq Unicode version

Theorem f1fveq 5816
Description: Equality of function values for a one-to-one function. (Contributed by NM, 11-Feb-1997.)
Assertion
Ref Expression
f1fveq  |-  ( ( F : A -1-1-> B  /\  ( C  e.  A  /\  D  e.  A
) )  ->  (
( F `  C
)  =  ( F `
 D )  <->  C  =  D ) )

Proof of Theorem f1fveq
StepHypRef Expression
1 f1veqaeq 5813 . 2  |-  ( ( F : A -1-1-> B  /\  ( C  e.  A  /\  D  e.  A
) )  ->  (
( F `  C
)  =  ( F `
 D )  ->  C  =  D )
)
2 fveq2 5555 . 2  |-  ( C  =  D  ->  ( F `  C )  =  ( F `  D ) )
31, 2impbid1 142 1  |-  ( ( F : A -1-1-> B  /\  ( C  e.  A  /\  D  e.  A
) )  ->  (
( F `  C
)  =  ( F `
 D )  <->  C  =  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   -1-1->wf1 5252   ` cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fv 5263
This theorem is referenced by:  f1elima  5817  cocan1  5831  f1oiso  5870  2dom  6861  xpdom2  6887  en2eqpr  6965  isotilem  7067  frec2uzled  10503  seqf1oglem1  10593  hashen  10858  eulerthlemh  12372  f1ocpbllem  12896  f1ovscpbl  12898  relogef  15040  iswomninnlem  15609
  Copyright terms: Public domain W3C validator