Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp3l | Unicode version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp3l |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . 2 | |
2 | 1 | 3ad2ant3 1020 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: simpl3l 1052 simpr3l 1058 simp13l 1112 simp23l 1118 simp33l 1124 issod 4313 tfisi 4580 tfrlem5 6305 tfrlemibxssdm 6318 tfr1onlembxssdm 6334 tfrcllembxssdm 6347 ecopovtrn 6622 ecopovtrng 6625 addassnqg 7356 ltsonq 7372 ltanqg 7374 ltmnqg 7375 addassnq0 7436 mulasssrg 7732 distrsrg 7733 lttrsr 7736 ltsosr 7738 ltasrg 7744 mulextsr1lem 7754 mulextsr1 7755 axmulass 7847 axdistr 7848 lemul1 8524 reapmul1lem 8525 reapmul1 8526 mulcanap 8595 mulcanap2 8596 divassap 8620 divdirap 8627 div11ap 8630 muldivdirap 8637 divcanap5 8644 apmul1 8718 apmul2 8719 ltdiv1 8798 ltmuldiv 8804 ledivmul 8807 lemuldiv 8811 ltdiv2 8817 lediv2 8821 ltdiv23 8822 lediv23 8823 xaddass2 9841 xlt2add 9851 modqdi 10362 expaddzap 10534 expmulzap 10536 leisorel 10785 resqrtcl 11006 xrbdtri 11252 dvdscmulr 11795 dvdsmulcr 11796 dvdsadd2b 11815 dvdsgcd 11980 rpexp12i 12122 pythagtriplem3 12234 pcpremul 12260 pceu 12262 pcqmul 12270 pcqdiv 12274 cmn4 12907 ablsub4 12915 abladdsub4 12916 psmetlecl 13405 xmetlecl 13438 |
Copyright terms: Public domain | W3C validator |