| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3l | Unicode version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp3l |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. 2
| |
| 2 | 1 | 3ad2ant3 1022 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simpl3l 1054 simpr3l 1060 simp13l 1114 simp23l 1120 simp33l 1126 issod 4364 tfisi 4633 tfrlem5 6390 tfrlemibxssdm 6403 tfr1onlembxssdm 6419 tfrcllembxssdm 6432 ecopovtrn 6709 ecopovtrng 6712 dftap2 7345 addassnqg 7477 ltsonq 7493 ltanqg 7495 ltmnqg 7496 addassnq0 7557 mulasssrg 7853 distrsrg 7854 lttrsr 7857 ltsosr 7859 ltasrg 7865 mulextsr1lem 7875 mulextsr1 7876 axmulass 7968 axdistr 7969 lemul1 8648 reapmul1lem 8649 reapmul1 8650 mulcanap 8720 mulcanap2 8721 divassap 8745 divdirap 8752 div11ap 8755 muldivdirap 8762 divcanap5 8769 apmul1 8843 apmul2 8844 ltdiv1 8923 ltmuldiv 8929 ledivmul 8932 lemuldiv 8936 ltdiv2 8942 lediv2 8946 ltdiv23 8947 lediv23 8948 xaddass2 9974 xlt2add 9984 modqdi 10518 expaddzap 10709 expmulzap 10711 leisorel 10963 resqrtcl 11259 xrbdtri 11506 dvdscmulr 12050 dvdsmulcr 12051 dvdsadd2b 12070 dvdsgcd 12252 rpexp12i 12396 pythagtriplem3 12509 pcpremul 12535 pceu 12537 pcqmul 12545 pcqdiv 12549 f1ocpbllem 13060 ercpbl 13081 erlecpbl 13082 cmn4 13559 ablsub4 13567 abladdsub4 13568 lidlsubcl 14167 psmetlecl 14724 xmetlecl 14757 |
| Copyright terms: Public domain | W3C validator |