| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3l | Unicode version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp3l |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. 2
| |
| 2 | 1 | 3ad2ant3 1023 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simpl3l 1055 simpr3l 1061 simp13l 1115 simp23l 1121 simp33l 1127 issod 4374 tfisi 4643 tfrlem5 6413 tfrlemibxssdm 6426 tfr1onlembxssdm 6442 tfrcllembxssdm 6455 ecopovtrn 6732 ecopovtrng 6735 dftap2 7383 addassnqg 7515 ltsonq 7531 ltanqg 7533 ltmnqg 7534 addassnq0 7595 mulasssrg 7891 distrsrg 7892 lttrsr 7895 ltsosr 7897 ltasrg 7903 mulextsr1lem 7913 mulextsr1 7914 axmulass 8006 axdistr 8007 lemul1 8686 reapmul1lem 8687 reapmul1 8688 mulcanap 8758 mulcanap2 8759 divassap 8783 divdirap 8790 div11ap 8793 muldivdirap 8800 divcanap5 8807 apmul1 8881 apmul2 8882 ltdiv1 8961 ltmuldiv 8967 ledivmul 8970 lemuldiv 8974 ltdiv2 8980 lediv2 8984 ltdiv23 8985 lediv23 8986 xaddass2 10012 xlt2add 10022 modqdi 10559 expaddzap 10750 expmulzap 10752 leisorel 11004 resqrtcl 11415 xrbdtri 11662 dvdscmulr 12206 dvdsmulcr 12207 dvdsadd2b 12226 dvdsgcd 12408 rpexp12i 12552 pythagtriplem3 12665 pcpremul 12691 pceu 12693 pcqmul 12701 pcqdiv 12705 f1ocpbllem 13217 ercpbl 13238 erlecpbl 13239 cmn4 13716 ablsub4 13724 abladdsub4 13725 lidlsubcl 14324 psmetlecl 14881 xmetlecl 14914 |
| Copyright terms: Public domain | W3C validator |