| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3l | Unicode version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp3l |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. 2
| |
| 2 | 1 | 3ad2ant3 1044 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: simpl3l 1076 simpr3l 1082 simp13l 1136 simp23l 1142 simp33l 1148 issod 4409 tfisi 4678 tfrlem5 6458 tfrlemibxssdm 6471 tfr1onlembxssdm 6487 tfrcllembxssdm 6500 ecopovtrn 6777 ecopovtrng 6780 dftap2 7433 addassnqg 7565 ltsonq 7581 ltanqg 7583 ltmnqg 7584 addassnq0 7645 mulasssrg 7941 distrsrg 7942 lttrsr 7945 ltsosr 7947 ltasrg 7953 mulextsr1lem 7963 mulextsr1 7964 axmulass 8056 axdistr 8057 lemul1 8736 reapmul1lem 8737 reapmul1 8738 mulcanap 8808 mulcanap2 8809 divassap 8833 divdirap 8840 div11ap 8843 muldivdirap 8850 divcanap5 8857 apmul1 8931 apmul2 8932 ltdiv1 9011 ltmuldiv 9017 ledivmul 9020 lemuldiv 9024 ltdiv2 9030 lediv2 9034 ltdiv23 9035 lediv23 9036 xaddass2 10062 xlt2add 10072 modqdi 10609 expaddzap 10800 expmulzap 10802 leisorel 11054 resqrtcl 11535 xrbdtri 11782 dvdscmulr 12326 dvdsmulcr 12327 dvdsadd2b 12346 dvdsgcd 12528 rpexp12i 12672 pythagtriplem3 12785 pcpremul 12811 pceu 12813 pcqmul 12821 pcqdiv 12825 f1ocpbllem 13338 ercpbl 13359 erlecpbl 13360 cmn4 13837 ablsub4 13845 abladdsub4 13846 lidlsubcl 14445 psmetlecl 15002 xmetlecl 15035 |
| Copyright terms: Public domain | W3C validator |