![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp3r | Unicode version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp3r |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | 3ad2ant3 1022 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: simpl3r 1055 simpr3r 1061 simp13r 1115 simp23r 1121 simp33r 1127 issod 4351 tfisi 4620 fvun1 5624 f1oiso2 5871 tfrlem5 6369 tfr1onlembxssdm 6398 tfrcllembxssdm 6411 ecopovtrn 6688 ecopovtrng 6691 dftap2 7313 addassnqg 7444 ltsonq 7460 ltanqg 7462 ltmnqg 7463 addassnq0 7524 mulasssrg 7820 distrsrg 7821 lttrsr 7824 ltsosr 7826 ltasrg 7832 mulextsr1lem 7842 mulextsr1 7843 axmulass 7935 axdistr 7936 reapmul1 8616 mulcanap 8686 mulcanap2 8687 divassap 8711 divdirap 8718 div11ap 8721 apmul1 8809 ltdiv1 8889 ltmuldiv 8895 ledivmul 8898 lemuldiv 8902 lediv2 8912 ltdiv23 8913 lediv23 8914 xaddass2 9939 xlt2add 9949 modqdi 10466 expaddzap 10657 expmulzap 10659 leisorel 10911 resqrtcl 11176 xrbdtri 11422 dvdsgcd 12152 rpexp12i 12296 pythagtriplem4 12409 pythagtriplem11 12415 pythagtriplem13 12417 pcpremul 12434 pceu 12436 pcqmul 12444 pcqdiv 12448 f1ocpbllem 12896 ercpbl 12917 erlecpbl 12918 cmn4 13378 ablsub4 13386 abladdsub4 13387 lidlsubcl 13986 psmetlecl 14513 xmetlecl 14546 xblcntrps 14592 xblcntr 14593 |
Copyright terms: Public domain | W3C validator |