| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3r | Unicode version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp3r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. 2
| |
| 2 | 1 | 3ad2ant3 1022 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simpl3r 1055 simpr3r 1061 simp13r 1115 simp23r 1121 simp33r 1127 issod 4355 tfisi 4624 fvun1 5630 f1oiso2 5877 tfrlem5 6376 tfr1onlembxssdm 6405 tfrcllembxssdm 6418 ecopovtrn 6695 ecopovtrng 6698 dftap2 7323 addassnqg 7454 ltsonq 7470 ltanqg 7472 ltmnqg 7473 addassnq0 7534 mulasssrg 7830 distrsrg 7831 lttrsr 7834 ltsosr 7836 ltasrg 7842 mulextsr1lem 7852 mulextsr1 7853 axmulass 7945 axdistr 7946 reapmul1 8627 mulcanap 8697 mulcanap2 8698 divassap 8722 divdirap 8729 div11ap 8732 apmul1 8820 ltdiv1 8900 ltmuldiv 8906 ledivmul 8909 lemuldiv 8913 lediv2 8923 ltdiv23 8924 lediv23 8925 xaddass2 9950 xlt2add 9960 modqdi 10489 expaddzap 10680 expmulzap 10682 leisorel 10934 resqrtcl 11199 xrbdtri 11446 dvdsgcd 12192 rpexp12i 12336 pythagtriplem4 12450 pythagtriplem11 12456 pythagtriplem13 12458 pcpremul 12475 pceu 12477 pcqmul 12485 pcqdiv 12489 f1ocpbllem 13000 ercpbl 13021 erlecpbl 13022 cmn4 13482 ablsub4 13490 abladdsub4 13491 lidlsubcl 14090 psmetlecl 14617 xmetlecl 14650 xblcntrps 14696 xblcntr 14697 |
| Copyright terms: Public domain | W3C validator |