![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp3r | Unicode version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp3r |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | 3ad2ant3 1022 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: simpl3r 1055 simpr3r 1061 simp13r 1115 simp23r 1121 simp33r 1127 issod 4350 tfisi 4619 fvun1 5623 f1oiso2 5870 tfrlem5 6367 tfr1onlembxssdm 6396 tfrcllembxssdm 6409 ecopovtrn 6686 ecopovtrng 6689 dftap2 7311 addassnqg 7442 ltsonq 7458 ltanqg 7460 ltmnqg 7461 addassnq0 7522 mulasssrg 7818 distrsrg 7819 lttrsr 7822 ltsosr 7824 ltasrg 7830 mulextsr1lem 7840 mulextsr1 7841 axmulass 7933 axdistr 7934 reapmul1 8614 mulcanap 8684 mulcanap2 8685 divassap 8709 divdirap 8716 div11ap 8719 apmul1 8807 ltdiv1 8887 ltmuldiv 8893 ledivmul 8896 lemuldiv 8900 lediv2 8910 ltdiv23 8911 lediv23 8912 xaddass2 9936 xlt2add 9946 modqdi 10463 expaddzap 10654 expmulzap 10656 leisorel 10908 resqrtcl 11173 xrbdtri 11419 dvdsgcd 12149 rpexp12i 12293 pythagtriplem4 12406 pythagtriplem11 12412 pythagtriplem13 12414 pcpremul 12431 pceu 12433 pcqmul 12441 pcqdiv 12445 f1ocpbllem 12893 ercpbl 12914 erlecpbl 12915 cmn4 13375 ablsub4 13383 abladdsub4 13384 lidlsubcl 13983 psmetlecl 14502 xmetlecl 14535 xblcntrps 14581 xblcntr 14582 |
Copyright terms: Public domain | W3C validator |