![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp3r | Unicode version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp3r |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | 3ad2ant3 967 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 927 |
This theorem is referenced by: simpl3r 1000 simpr3r 1006 simp13r 1060 simp23r 1066 simp33r 1072 issod 4155 tfisi 4415 fvun1 5383 f1oiso2 5620 tfrlem5 6093 tfr1onlembxssdm 6122 tfrcllembxssdm 6135 ecopovtrn 6403 ecopovtrng 6406 addassnqg 7002 ltsonq 7018 ltanqg 7020 ltmnqg 7021 addassnq0 7082 mulasssrg 7365 distrsrg 7366 lttrsr 7369 ltsosr 7371 ltasrg 7377 mulextsr1lem 7386 mulextsr1 7387 axmulass 7469 axdistr 7470 reapmul1 8133 mulcanap 8195 mulcanap2 8196 divassap 8218 divdirap 8225 div11ap 8228 apmul1 8316 ltdiv1 8390 ltmuldiv 8396 ledivmul 8399 lemuldiv 8403 lediv2 8413 ltdiv23 8414 lediv23 8415 modqdi 9860 expaddzap 10060 expmulzap 10062 leisorel 10303 resqrtcl 10523 dvdsgcd 11340 rpexp12i 11473 |
Copyright terms: Public domain | W3C validator |