| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3r | Unicode version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp3r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. 2
| |
| 2 | 1 | 3ad2ant3 1023 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simpl3r 1056 simpr3r 1062 simp13r 1116 simp23r 1122 simp33r 1128 issod 4384 tfisi 4653 fvun1 5668 f1oiso2 5919 tfrlem5 6423 tfr1onlembxssdm 6452 tfrcllembxssdm 6465 ecopovtrn 6742 ecopovtrng 6745 dftap2 7398 addassnqg 7530 ltsonq 7546 ltanqg 7548 ltmnqg 7549 addassnq0 7610 mulasssrg 7906 distrsrg 7907 lttrsr 7910 ltsosr 7912 ltasrg 7918 mulextsr1lem 7928 mulextsr1 7929 axmulass 8021 axdistr 8022 reapmul1 8703 mulcanap 8773 mulcanap2 8774 divassap 8798 divdirap 8805 div11ap 8808 apmul1 8896 ltdiv1 8976 ltmuldiv 8982 ledivmul 8985 lemuldiv 8989 lediv2 8999 ltdiv23 9000 lediv23 9001 xaddass2 10027 xlt2add 10037 modqdi 10574 expaddzap 10765 expmulzap 10767 leisorel 11019 resqrtcl 11455 xrbdtri 11702 dvdsgcd 12448 rpexp12i 12592 pythagtriplem4 12706 pythagtriplem11 12712 pythagtriplem13 12714 pcpremul 12731 pceu 12733 pcqmul 12741 pcqdiv 12745 f1ocpbllem 13257 ercpbl 13278 erlecpbl 13279 cmn4 13756 ablsub4 13764 abladdsub4 13765 lidlsubcl 14364 psmetlecl 14921 xmetlecl 14954 xblcntrps 15000 xblcntr 15001 |
| Copyright terms: Public domain | W3C validator |