| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3r | Unicode version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp3r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. 2
| |
| 2 | 1 | 3ad2ant3 1023 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simpl3r 1056 simpr3r 1062 simp13r 1116 simp23r 1122 simp33r 1128 issod 4366 tfisi 4635 fvun1 5645 f1oiso2 5896 tfrlem5 6400 tfr1onlembxssdm 6429 tfrcllembxssdm 6442 ecopovtrn 6719 ecopovtrng 6722 dftap2 7363 addassnqg 7495 ltsonq 7511 ltanqg 7513 ltmnqg 7514 addassnq0 7575 mulasssrg 7871 distrsrg 7872 lttrsr 7875 ltsosr 7877 ltasrg 7883 mulextsr1lem 7893 mulextsr1 7894 axmulass 7986 axdistr 7987 reapmul1 8668 mulcanap 8738 mulcanap2 8739 divassap 8763 divdirap 8770 div11ap 8773 apmul1 8861 ltdiv1 8941 ltmuldiv 8947 ledivmul 8950 lemuldiv 8954 lediv2 8964 ltdiv23 8965 lediv23 8966 xaddass2 9992 xlt2add 10002 modqdi 10537 expaddzap 10728 expmulzap 10730 leisorel 10982 resqrtcl 11340 xrbdtri 11587 dvdsgcd 12333 rpexp12i 12477 pythagtriplem4 12591 pythagtriplem11 12597 pythagtriplem13 12599 pcpremul 12616 pceu 12618 pcqmul 12626 pcqdiv 12630 f1ocpbllem 13142 ercpbl 13163 erlecpbl 13164 cmn4 13641 ablsub4 13649 abladdsub4 13650 lidlsubcl 14249 psmetlecl 14806 xmetlecl 14839 xblcntrps 14885 xblcntr 14886 |
| Copyright terms: Public domain | W3C validator |