ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp3r Unicode version

Theorem simp3r 1011
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.)
Assertion
Ref Expression
simp3r  |-  ( (
ph  /\  ps  /\  ( ch  /\  th ) )  ->  th )

Proof of Theorem simp3r
StepHypRef Expression
1 simpr 109 . 2  |-  ( ( ch  /\  th )  ->  th )
213ad2ant3 1005 1  |-  ( (
ph  /\  ps  /\  ( ch  /\  th ) )  ->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 965
This theorem is referenced by:  simpl3r  1038  simpr3r  1044  simp13r  1098  simp23r  1104  simp33r  1110  issod  4274  tfisi  4540  fvun1  5527  f1oiso2  5768  tfrlem5  6251  tfr1onlembxssdm  6280  tfrcllembxssdm  6293  ecopovtrn  6566  ecopovtrng  6569  addassnqg  7281  ltsonq  7297  ltanqg  7299  ltmnqg  7300  addassnq0  7361  mulasssrg  7657  distrsrg  7658  lttrsr  7661  ltsosr  7663  ltasrg  7669  mulextsr1lem  7679  mulextsr1  7680  axmulass  7772  axdistr  7773  reapmul1  8449  mulcanap  8518  mulcanap2  8519  divassap  8542  divdirap  8549  div11ap  8552  apmul1  8640  ltdiv1  8718  ltmuldiv  8724  ledivmul  8727  lemuldiv  8731  lediv2  8741  ltdiv23  8742  lediv23  8743  xaddass2  9752  xlt2add  9762  modqdi  10269  expaddzap  10441  expmulzap  10443  leisorel  10685  resqrtcl  10906  xrbdtri  11150  dvdsgcd  11867  rpexp12i  12000  psmetlecl  12673  xmetlecl  12706  xblcntrps  12752  xblcntr  12753
  Copyright terms: Public domain W3C validator