| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3r | Unicode version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp3r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. 2
| |
| 2 | 1 | 3ad2ant3 1023 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simpl3r 1056 simpr3r 1062 simp13r 1116 simp23r 1122 simp33r 1128 issod 4367 tfisi 4636 fvun1 5647 f1oiso2 5898 tfrlem5 6402 tfr1onlembxssdm 6431 tfrcllembxssdm 6444 ecopovtrn 6721 ecopovtrng 6724 dftap2 7365 addassnqg 7497 ltsonq 7513 ltanqg 7515 ltmnqg 7516 addassnq0 7577 mulasssrg 7873 distrsrg 7874 lttrsr 7877 ltsosr 7879 ltasrg 7885 mulextsr1lem 7895 mulextsr1 7896 axmulass 7988 axdistr 7989 reapmul1 8670 mulcanap 8740 mulcanap2 8741 divassap 8765 divdirap 8772 div11ap 8775 apmul1 8863 ltdiv1 8943 ltmuldiv 8949 ledivmul 8952 lemuldiv 8956 lediv2 8966 ltdiv23 8967 lediv23 8968 xaddass2 9994 xlt2add 10004 modqdi 10539 expaddzap 10730 expmulzap 10732 leisorel 10984 resqrtcl 11373 xrbdtri 11620 dvdsgcd 12366 rpexp12i 12510 pythagtriplem4 12624 pythagtriplem11 12630 pythagtriplem13 12632 pcpremul 12649 pceu 12651 pcqmul 12659 pcqdiv 12663 f1ocpbllem 13175 ercpbl 13196 erlecpbl 13197 cmn4 13674 ablsub4 13682 abladdsub4 13683 lidlsubcl 14282 psmetlecl 14839 xmetlecl 14872 xblcntrps 14918 xblcntr 14919 |
| Copyright terms: Public domain | W3C validator |