| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3r | Unicode version | ||
| Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
| Ref | Expression |
|---|---|
| simp3r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. 2
| |
| 2 | 1 | 3ad2ant3 1044 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: simpl3r 1077 simpr3r 1083 simp13r 1137 simp23r 1143 simp33r 1149 issod 4410 tfisi 4679 fvun1 5700 f1oiso2 5951 tfrlem5 6460 tfr1onlembxssdm 6489 tfrcllembxssdm 6502 ecopovtrn 6779 ecopovtrng 6782 dftap2 7437 addassnqg 7569 ltsonq 7585 ltanqg 7587 ltmnqg 7588 addassnq0 7649 mulasssrg 7945 distrsrg 7946 lttrsr 7949 ltsosr 7951 ltasrg 7957 mulextsr1lem 7967 mulextsr1 7968 axmulass 8060 axdistr 8061 reapmul1 8742 mulcanap 8812 mulcanap2 8813 divassap 8837 divdirap 8844 div11ap 8847 apmul1 8935 ltdiv1 9015 ltmuldiv 9021 ledivmul 9024 lemuldiv 9028 lediv2 9038 ltdiv23 9039 lediv23 9040 xaddass2 10066 xlt2add 10076 modqdi 10614 expaddzap 10805 expmulzap 10807 leisorel 11059 resqrtcl 11540 xrbdtri 11787 dvdsgcd 12533 rpexp12i 12677 pythagtriplem4 12791 pythagtriplem11 12797 pythagtriplem13 12799 pcpremul 12816 pceu 12818 pcqmul 12826 pcqdiv 12830 f1ocpbllem 13343 ercpbl 13364 erlecpbl 13365 cmn4 13842 ablsub4 13850 abladdsub4 13851 lidlsubcl 14451 psmetlecl 15008 xmetlecl 15041 xblcntrps 15087 xblcntr 15088 |
| Copyright terms: Public domain | W3C validator |