| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnntri | Unicode version | ||
| Description: Property of the preimage of an interior. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| cncls2i.1 |
|
| Ref | Expression |
|---|---|
| cnntri |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntop1 14875 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | cnvimass 5091 |
. . 3
| |
| 4 | eqid 2229 |
. . . . . 6
| |
| 5 | cncls2i.1 |
. . . . . 6
| |
| 6 | 4, 5 | cnf 14878 |
. . . . 5
|
| 7 | 6 | fdmd 5480 |
. . . 4
|
| 8 | 7 | adantr 276 |
. . 3
|
| 9 | 3, 8 | sseqtrid 3274 |
. 2
|
| 10 | cntop2 14876 |
. . . 4
| |
| 11 | 5 | ntropn 14791 |
. . . 4
|
| 12 | 10, 11 | sylan 283 |
. . 3
|
| 13 | cnima 14894 |
. . 3
| |
| 14 | 12, 13 | syldan 282 |
. 2
|
| 15 | 5 | ntrss2 14795 |
. . . 4
|
| 16 | 10, 15 | sylan 283 |
. . 3
|
| 17 | imass2 5104 |
. . 3
| |
| 18 | 16, 17 | syl 14 |
. 2
|
| 19 | 4 | ssntr 14796 |
. 2
|
| 20 | 2, 9, 14, 18, 19 | syl22anc 1272 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-map 6797 df-top 14672 df-topon 14685 df-ntr 14770 df-cn 14862 |
| This theorem is referenced by: cnntr 14899 hmeontr 14987 |
| Copyright terms: Public domain | W3C validator |