ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnntri Unicode version

Theorem cnntri 14898
Description: Property of the preimage of an interior. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
cncls2i.1  |-  Y  = 
U. K
Assertion
Ref Expression
cnntri  |-  ( ( F  e.  ( J  Cn  K )  /\  S  C_  Y )  -> 
( `' F "
( ( int `  K
) `  S )
)  C_  ( ( int `  J ) `  ( `' F " S ) ) )

Proof of Theorem cnntri
StepHypRef Expression
1 cntop1 14875 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
21adantr 276 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  S  C_  Y )  ->  J  e.  Top )
3 cnvimass 5091 . . 3  |-  ( `' F " S ) 
C_  dom  F
4 eqid 2229 . . . . . 6  |-  U. J  =  U. J
5 cncls2i.1 . . . . . 6  |-  Y  = 
U. K
64, 5cnf 14878 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> Y )
76fdmd 5480 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  dom  F  =  U. J )
87adantr 276 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  S  C_  Y )  ->  dom  F  =  U. J
)
93, 8sseqtrid 3274 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  S  C_  Y )  -> 
( `' F " S )  C_  U. J
)
10 cntop2 14876 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
115ntropn 14791 . . . 4  |-  ( ( K  e.  Top  /\  S  C_  Y )  -> 
( ( int `  K
) `  S )  e.  K )
1210, 11sylan 283 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  S  C_  Y )  -> 
( ( int `  K
) `  S )  e.  K )
13 cnima 14894 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  ( ( int `  K
) `  S )  e.  K )  ->  ( `' F " ( ( int `  K ) `
 S ) )  e.  J )
1412, 13syldan 282 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  S  C_  Y )  -> 
( `' F "
( ( int `  K
) `  S )
)  e.  J )
155ntrss2 14795 . . . 4  |-  ( ( K  e.  Top  /\  S  C_  Y )  -> 
( ( int `  K
) `  S )  C_  S )
1610, 15sylan 283 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  S  C_  Y )  -> 
( ( int `  K
) `  S )  C_  S )
17 imass2 5104 . . 3  |-  ( ( ( int `  K
) `  S )  C_  S  ->  ( `' F " ( ( int `  K ) `  S
) )  C_  ( `' F " S ) )
1816, 17syl 14 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  S  C_  Y )  -> 
( `' F "
( ( int `  K
) `  S )
)  C_  ( `' F " S ) )
194ssntr 14796 . 2  |-  ( ( ( J  e.  Top  /\  ( `' F " S )  C_  U. J
)  /\  ( ( `' F " ( ( int `  K ) `
 S ) )  e.  J  /\  ( `' F " ( ( int `  K ) `
 S ) ) 
C_  ( `' F " S ) ) )  ->  ( `' F " ( ( int `  K
) `  S )
)  C_  ( ( int `  J ) `  ( `' F " S ) ) )
202, 9, 14, 18, 19syl22anc 1272 1  |-  ( ( F  e.  ( J  Cn  K )  /\  S  C_  Y )  -> 
( `' F "
( ( int `  K
) `  S )
)  C_  ( ( int `  J ) `  ( `' F " S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    C_ wss 3197   U.cuni 3888   `'ccnv 4718   dom cdm 4719   "cima 4722   ` cfv 5318  (class class class)co 6001   Topctop 14671   intcnt 14767    Cn ccn 14859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-map 6797  df-top 14672  df-topon 14685  df-ntr 14770  df-cn 14862
This theorem is referenced by:  cnntr  14899  hmeontr  14987
  Copyright terms: Public domain W3C validator