ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnntri Unicode version

Theorem cnntri 13655
Description: Property of the preimage of an interior. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
cncls2i.1  |-  Y  = 
U. K
Assertion
Ref Expression
cnntri  |-  ( ( F  e.  ( J  Cn  K )  /\  S  C_  Y )  -> 
( `' F "
( ( int `  K
) `  S )
)  C_  ( ( int `  J ) `  ( `' F " S ) ) )

Proof of Theorem cnntri
StepHypRef Expression
1 cntop1 13632 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
21adantr 276 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  S  C_  Y )  ->  J  e.  Top )
3 cnvimass 4991 . . 3  |-  ( `' F " S ) 
C_  dom  F
4 eqid 2177 . . . . . 6  |-  U. J  =  U. J
5 cncls2i.1 . . . . . 6  |-  Y  = 
U. K
64, 5cnf 13635 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> Y )
76fdmd 5372 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  dom  F  =  U. J )
87adantr 276 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  S  C_  Y )  ->  dom  F  =  U. J
)
93, 8sseqtrid 3205 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  S  C_  Y )  -> 
( `' F " S )  C_  U. J
)
10 cntop2 13633 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
115ntropn 13548 . . . 4  |-  ( ( K  e.  Top  /\  S  C_  Y )  -> 
( ( int `  K
) `  S )  e.  K )
1210, 11sylan 283 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  S  C_  Y )  -> 
( ( int `  K
) `  S )  e.  K )
13 cnima 13651 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  ( ( int `  K
) `  S )  e.  K )  ->  ( `' F " ( ( int `  K ) `
 S ) )  e.  J )
1412, 13syldan 282 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  S  C_  Y )  -> 
( `' F "
( ( int `  K
) `  S )
)  e.  J )
155ntrss2 13552 . . . 4  |-  ( ( K  e.  Top  /\  S  C_  Y )  -> 
( ( int `  K
) `  S )  C_  S )
1610, 15sylan 283 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  S  C_  Y )  -> 
( ( int `  K
) `  S )  C_  S )
17 imass2 5004 . . 3  |-  ( ( ( int `  K
) `  S )  C_  S  ->  ( `' F " ( ( int `  K ) `  S
) )  C_  ( `' F " S ) )
1816, 17syl 14 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  S  C_  Y )  -> 
( `' F "
( ( int `  K
) `  S )
)  C_  ( `' F " S ) )
194ssntr 13553 . 2  |-  ( ( ( J  e.  Top  /\  ( `' F " S )  C_  U. J
)  /\  ( ( `' F " ( ( int `  K ) `
 S ) )  e.  J  /\  ( `' F " ( ( int `  K ) `
 S ) ) 
C_  ( `' F " S ) ) )  ->  ( `' F " ( ( int `  K
) `  S )
)  C_  ( ( int `  J ) `  ( `' F " S ) ) )
202, 9, 14, 18, 19syl22anc 1239 1  |-  ( ( F  e.  ( J  Cn  K )  /\  S  C_  Y )  -> 
( `' F "
( ( int `  K
) `  S )
)  C_  ( ( int `  J ) `  ( `' F " S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148    C_ wss 3129   U.cuni 3809   `'ccnv 4625   dom cdm 4626   "cima 4629   ` cfv 5216  (class class class)co 5874   Topctop 13428   intcnt 13524    Cn ccn 13616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-map 6649  df-top 13429  df-topon 13442  df-ntr 13527  df-cn 13619
This theorem is referenced by:  cnntr  13656  hmeontr  13744
  Copyright terms: Public domain W3C validator