ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnntri Unicode version

Theorem cnntri 14729
Description: Property of the preimage of an interior. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
cncls2i.1  |-  Y  = 
U. K
Assertion
Ref Expression
cnntri  |-  ( ( F  e.  ( J  Cn  K )  /\  S  C_  Y )  -> 
( `' F "
( ( int `  K
) `  S )
)  C_  ( ( int `  J ) `  ( `' F " S ) ) )

Proof of Theorem cnntri
StepHypRef Expression
1 cntop1 14706 . . 3  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
21adantr 276 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  S  C_  Y )  ->  J  e.  Top )
3 cnvimass 5046 . . 3  |-  ( `' F " S ) 
C_  dom  F
4 eqid 2205 . . . . . 6  |-  U. J  =  U. J
5 cncls2i.1 . . . . . 6  |-  Y  = 
U. K
64, 5cnf 14709 . . . . 5  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> Y )
76fdmd 5434 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  dom  F  =  U. J )
87adantr 276 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  S  C_  Y )  ->  dom  F  =  U. J
)
93, 8sseqtrid 3243 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  S  C_  Y )  -> 
( `' F " S )  C_  U. J
)
10 cntop2 14707 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
115ntropn 14622 . . . 4  |-  ( ( K  e.  Top  /\  S  C_  Y )  -> 
( ( int `  K
) `  S )  e.  K )
1210, 11sylan 283 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  S  C_  Y )  -> 
( ( int `  K
) `  S )  e.  K )
13 cnima 14725 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  ( ( int `  K
) `  S )  e.  K )  ->  ( `' F " ( ( int `  K ) `
 S ) )  e.  J )
1412, 13syldan 282 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  S  C_  Y )  -> 
( `' F "
( ( int `  K
) `  S )
)  e.  J )
155ntrss2 14626 . . . 4  |-  ( ( K  e.  Top  /\  S  C_  Y )  -> 
( ( int `  K
) `  S )  C_  S )
1610, 15sylan 283 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  S  C_  Y )  -> 
( ( int `  K
) `  S )  C_  S )
17 imass2 5059 . . 3  |-  ( ( ( int `  K
) `  S )  C_  S  ->  ( `' F " ( ( int `  K ) `  S
) )  C_  ( `' F " S ) )
1816, 17syl 14 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  S  C_  Y )  -> 
( `' F "
( ( int `  K
) `  S )
)  C_  ( `' F " S ) )
194ssntr 14627 . 2  |-  ( ( ( J  e.  Top  /\  ( `' F " S )  C_  U. J
)  /\  ( ( `' F " ( ( int `  K ) `
 S ) )  e.  J  /\  ( `' F " ( ( int `  K ) `
 S ) ) 
C_  ( `' F " S ) ) )  ->  ( `' F " ( ( int `  K
) `  S )
)  C_  ( ( int `  J ) `  ( `' F " S ) ) )
202, 9, 14, 18, 19syl22anc 1251 1  |-  ( ( F  e.  ( J  Cn  K )  /\  S  C_  Y )  -> 
( `' F "
( ( int `  K
) `  S )
)  C_  ( ( int `  J ) `  ( `' F " S ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176    C_ wss 3166   U.cuni 3850   `'ccnv 4675   dom cdm 4676   "cima 4679   ` cfv 5272  (class class class)co 5946   Topctop 14502   intcnt 14598    Cn ccn 14690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-map 6739  df-top 14503  df-topon 14516  df-ntr 14601  df-cn 14693
This theorem is referenced by:  cnntr  14730  hmeontr  14818
  Copyright terms: Public domain W3C validator