ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetdmdm Unicode version

Theorem xmetdmdm 12695
Description: Recover the base set from an extended metric. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
xmetdmdm  |-  ( D  e.  ( *Met `  X )  ->  X  =  dom  dom  D )

Proof of Theorem xmetdmdm
StepHypRef Expression
1 xmetf 12689 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  D : ( X  X.  X ) --> RR* )
21fdmd 5319 . . 3  |-  ( D  e.  ( *Met `  X )  ->  dom  D  =  ( X  X.  X ) )
32dmeqd 4781 . 2  |-  ( D  e.  ( *Met `  X )  ->  dom  dom 
D  =  dom  ( X  X.  X ) )
4 dmxpid 4800 . 2  |-  dom  ( X  X.  X )  =  X
53, 4eqtr2di 2204 1  |-  ( D  e.  ( *Met `  X )  ->  X  =  dom  dom  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1332    e. wcel 2125    X. cxp 4577   dom cdm 4579   ` cfv 5163   RR*cxr 7890   *Metcxmet 12319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-cnex 7802  ax-resscn 7803
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-ral 2437  df-rex 2438  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-fv 5171  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-map 6584  df-pnf 7893  df-mnf 7894  df-xr 7895  df-xmet 12327
This theorem is referenced by:  metdmdm  12696  xmetunirn  12697
  Copyright terms: Public domain W3C validator