ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmetdmdm Unicode version

Theorem xmetdmdm 14253
Description: Recover the base set from an extended metric. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
xmetdmdm  |-  ( D  e.  ( *Met `  X )  ->  X  =  dom  dom  D )

Proof of Theorem xmetdmdm
StepHypRef Expression
1 xmetf 14247 . . . 4  |-  ( D  e.  ( *Met `  X )  ->  D : ( X  X.  X ) --> RR* )
21fdmd 5387 . . 3  |-  ( D  e.  ( *Met `  X )  ->  dom  D  =  ( X  X.  X ) )
32dmeqd 4844 . 2  |-  ( D  e.  ( *Met `  X )  ->  dom  dom 
D  =  dom  ( X  X.  X ) )
4 dmxpid 4863 . 2  |-  dom  ( X  X.  X )  =  X
53, 4eqtr2di 2239 1  |-  ( D  e.  ( *Met `  X )  ->  X  =  dom  dom  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2160    X. cxp 4639   dom cdm 4641   ` cfv 5231   RR*cxr 8009   *Metcxmet 13810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-cnex 7920  ax-resscn 7921
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-fv 5239  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-map 6668  df-pnf 8012  df-mnf 8013  df-xr 8014  df-xmet 13818
This theorem is referenced by:  metdmdm  14254  xmetunirn  14255
  Copyright terms: Public domain W3C validator