ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqf Unicode version

Theorem seqf 10369
Description: Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypotheses
Ref Expression
seqf.1  |-  Z  =  ( ZZ>= `  M )
seqf.2  |-  ( ph  ->  M  e.  ZZ )
seqf.3  |-  ( (
ph  /\  x  e.  Z )  ->  ( F `  x )  e.  S )
seqf.4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seqf  |-  ( ph  ->  seq M (  .+  ,  F ) : Z --> S )
Distinct variable groups:    x,  .+ , y    x, F, y    x, M, y    x, S, y   
x, Z    ph, x, y
Allowed substitution hint:    Z( y)

Proof of Theorem seqf
Dummy variables  a  b  s  t  w  z  u  v  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqf.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
2 fveq2 5470 . . . . 5  |-  ( x  =  M  ->  ( F `  x )  =  ( F `  M ) )
32eleq1d 2226 . . . 4  |-  ( x  =  M  ->  (
( F `  x
)  e.  S  <->  ( F `  M )  e.  S
) )
4 seqf.3 . . . . 5  |-  ( (
ph  /\  x  e.  Z )  ->  ( F `  x )  e.  S )
54ralrimiva 2530 . . . 4  |-  ( ph  ->  A. x  e.  Z  ( F `  x )  e.  S )
6 uzid 9458 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
71, 6syl 14 . . . . 5  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
8 seqf.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
97, 8eleqtrrdi 2251 . . . 4  |-  ( ph  ->  M  e.  Z )
103, 5, 9rspcdva 2821 . . 3  |-  ( ph  ->  ( F `  M
)  e.  S )
11 ssv 3150 . . . 4  |-  S  C_  _V
1211a1i 9 . . 3  |-  ( ph  ->  S  C_  _V )
13 simprl 521 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  x  e.  ( ZZ>= `  M )
)
14 simprr 522 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  y  e.  S )
15 seqf.4 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
1615caovclg 5975 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a  .+  b
)  e.  S )
1716adantlr 469 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= `  M )  /\  y  e.  S ) )  /\  ( a  e.  S  /\  b  e.  S
) )  ->  (
a  .+  b )  e.  S )
18 fveq2 5470 . . . . . . . 8  |-  ( c  =  ( x  + 
1 )  ->  ( F `  c )  =  ( F `  ( x  +  1
) ) )
1918eleq1d 2226 . . . . . . 7  |-  ( c  =  ( x  + 
1 )  ->  (
( F `  c
)  e.  S  <->  ( F `  ( x  +  1 ) )  e.  S
) )
20 fveq2 5470 . . . . . . . . . . 11  |-  ( x  =  c  ->  ( F `  x )  =  ( F `  c ) )
2120eleq1d 2226 . . . . . . . . . 10  |-  ( x  =  c  ->  (
( F `  x
)  e.  S  <->  ( F `  c )  e.  S
) )
2221cbvralv 2680 . . . . . . . . 9  |-  ( A. x  e.  Z  ( F `  x )  e.  S  <->  A. c  e.  Z  ( F `  c )  e.  S )
235, 22sylib 121 . . . . . . . 8  |-  ( ph  ->  A. c  e.  Z  ( F `  c )  e.  S )
2423adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  A. c  e.  Z  ( F `  c )  e.  S
)
25 peano2uz 9499 . . . . . . . . 9  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( x  +  1 )  e.  ( ZZ>= `  M )
)
2625, 8eleqtrrdi 2251 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( x  +  1 )  e.  Z )
2713, 26syl 14 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x  +  1 )  e.  Z )
2819, 24, 27rspcdva 2821 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  ( F `  ( x  +  1 ) )  e.  S )
2917, 14, 28caovcld 5976 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
y  .+  ( F `  ( x  +  1 ) ) )  e.  S )
30 fvoveq1 5849 . . . . . . 7  |-  ( z  =  x  ->  ( F `  ( z  +  1 ) )  =  ( F `  ( x  +  1
) ) )
3130oveq2d 5842 . . . . . 6  |-  ( z  =  x  ->  (
w  .+  ( F `  ( z  +  1 ) ) )  =  ( w  .+  ( F `  ( x  +  1 ) ) ) )
32 oveq1 5833 . . . . . 6  |-  ( w  =  y  ->  (
w  .+  ( F `  ( x  +  1 ) ) )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
33 eqid 2157 . . . . . 6  |-  ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) )  =  ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) )
3431, 32, 33ovmpog 5957 . . . . 5  |-  ( ( x  e.  ( ZZ>= `  M )  /\  y  e.  S  /\  (
y  .+  ( F `  ( x  +  1 ) ) )  e.  S )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
3513, 14, 29, 34syl3anc 1220 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
3635, 29eqeltrd 2234 . . 3  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  S )
37 iseqvalcbv 10365 . . 3  |- frec ( ( s  e.  ( ZZ>= `  M ) ,  t  e.  _V  |->  <. (
s  +  1 ) ,  ( s ( u  e.  ( ZZ>= `  M ) ,  v  e.  S  |->  ( v 
.+  ( F `  ( u  +  1
) ) ) ) t ) >. ) ,  <. M ,  ( F `  M )
>. )  = frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )
388eleq2i 2224 . . . . 5  |-  ( x  e.  Z  <->  x  e.  ( ZZ>= `  M )
)
3938, 4sylan2br 286 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
401, 37, 39, 15seq3val 10366 . . 3  |-  ( ph  ->  seq M (  .+  ,  F )  =  ran frec ( ( s  e.  (
ZZ>= `  M ) ,  t  e.  _V  |->  <.
( s  +  1 ) ,  ( s ( u  e.  (
ZZ>= `  M ) ,  v  e.  S  |->  ( v  .+  ( F `
 ( u  + 
1 ) ) ) ) t ) >.
) ,  <. M , 
( F `  M
) >. ) )
411, 10, 12, 36, 37, 40frecuzrdgtclt 10329 . 2  |-  ( ph  ->  seq M (  .+  ,  F ) : (
ZZ>= `  M ) --> S )
428a1i 9 . . 3  |-  ( ph  ->  Z  =  ( ZZ>= `  M ) )
4342feq2d 5309 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) : Z --> S  <->  seq M ( 
.+  ,  F ) : ( ZZ>= `  M
) --> S ) )
4441, 43mpbird 166 1  |-  ( ph  ->  seq M (  .+  ,  F ) : Z --> S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128   A.wral 2435   _Vcvv 2712    C_ wss 3102   <.cop 3564   -->wf 5168   ` cfv 5172  (class class class)co 5826    e. cmpo 5828  freccfrec 6339   1c1 7735    + caddc 7737   ZZcz 9172   ZZ>=cuz 9444    seqcseq 10353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4081  ax-sep 4084  ax-nul 4092  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498  ax-iinf 4549  ax-cnex 7825  ax-resscn 7826  ax-1cn 7827  ax-1re 7828  ax-icn 7829  ax-addcl 7830  ax-addrcl 7831  ax-mulcl 7832  ax-addcom 7834  ax-addass 7836  ax-distr 7838  ax-i2m1 7839  ax-0lt1 7840  ax-0id 7842  ax-rnegex 7843  ax-cnre 7845  ax-pre-ltirr 7846  ax-pre-ltwlin 7847  ax-pre-lttrn 7848  ax-pre-ltadd 7850
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4028  df-mpt 4029  df-tr 4065  df-id 4255  df-iord 4328  df-on 4330  df-ilim 4331  df-suc 4333  df-iom 4552  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-f1 5177  df-fo 5178  df-f1o 5179  df-fv 5180  df-riota 5782  df-ov 5829  df-oprab 5830  df-mpo 5831  df-1st 6090  df-2nd 6091  df-recs 6254  df-frec 6340  df-pnf 7916  df-mnf 7917  df-xr 7918  df-ltxr 7919  df-le 7920  df-sub 8052  df-neg 8053  df-inn 8839  df-n0 9096  df-z 9173  df-uz 9445  df-seqfrec 10354
This theorem is referenced by:  seq3p1  10370  seq3feq2  10378  seq3feq  10380  serf  10382  serfre  10383  seq3split  10387  seq3caopr2  10390  seq3f1olemqsumkj  10406  seq3homo  10418  seq3z  10419  seqfeq3  10420  seq3distr  10421  ser3ge0  10425  exp3vallem  10429  exp3val  10430  facnn  10612  fac0  10613  bcval5  10648  seq3coll  10724  seq3shft  10749  resqrexlemf  10918  prodf  11446  algrf  11937  nninfdclemf  12250
  Copyright terms: Public domain W3C validator