ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqf Unicode version

Theorem seqf 10611
Description: Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypotheses
Ref Expression
seqf.1  |-  Z  =  ( ZZ>= `  M )
seqf.2  |-  ( ph  ->  M  e.  ZZ )
seqf.3  |-  ( (
ph  /\  x  e.  Z )  ->  ( F `  x )  e.  S )
seqf.4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seqf  |-  ( ph  ->  seq M (  .+  ,  F ) : Z --> S )
Distinct variable groups:    x,  .+ , y    x, F, y    x, M, y    x, S, y   
x, Z    ph, x, y
Allowed substitution hint:    Z( y)

Proof of Theorem seqf
Dummy variables  a  b  s  t  w  z  u  v  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqf.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
2 fveq2 5578 . . . . 5  |-  ( x  =  M  ->  ( F `  x )  =  ( F `  M ) )
32eleq1d 2274 . . . 4  |-  ( x  =  M  ->  (
( F `  x
)  e.  S  <->  ( F `  M )  e.  S
) )
4 seqf.3 . . . . 5  |-  ( (
ph  /\  x  e.  Z )  ->  ( F `  x )  e.  S )
54ralrimiva 2579 . . . 4  |-  ( ph  ->  A. x  e.  Z  ( F `  x )  e.  S )
6 uzid 9664 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
71, 6syl 14 . . . . 5  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
8 seqf.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
97, 8eleqtrrdi 2299 . . . 4  |-  ( ph  ->  M  e.  Z )
103, 5, 9rspcdva 2882 . . 3  |-  ( ph  ->  ( F `  M
)  e.  S )
11 ssv 3215 . . . 4  |-  S  C_  _V
1211a1i 9 . . 3  |-  ( ph  ->  S  C_  _V )
13 simprl 529 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  x  e.  ( ZZ>= `  M )
)
14 simprr 531 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  y  e.  S )
15 seqf.4 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
1615caovclg 6101 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a  .+  b
)  e.  S )
1716adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= `  M )  /\  y  e.  S ) )  /\  ( a  e.  S  /\  b  e.  S
) )  ->  (
a  .+  b )  e.  S )
18 fveq2 5578 . . . . . . . 8  |-  ( c  =  ( x  + 
1 )  ->  ( F `  c )  =  ( F `  ( x  +  1
) ) )
1918eleq1d 2274 . . . . . . 7  |-  ( c  =  ( x  + 
1 )  ->  (
( F `  c
)  e.  S  <->  ( F `  ( x  +  1 ) )  e.  S
) )
20 fveq2 5578 . . . . . . . . . . 11  |-  ( x  =  c  ->  ( F `  x )  =  ( F `  c ) )
2120eleq1d 2274 . . . . . . . . . 10  |-  ( x  =  c  ->  (
( F `  x
)  e.  S  <->  ( F `  c )  e.  S
) )
2221cbvralv 2738 . . . . . . . . 9  |-  ( A. x  e.  Z  ( F `  x )  e.  S  <->  A. c  e.  Z  ( F `  c )  e.  S )
235, 22sylib 122 . . . . . . . 8  |-  ( ph  ->  A. c  e.  Z  ( F `  c )  e.  S )
2423adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  A. c  e.  Z  ( F `  c )  e.  S
)
25 peano2uz 9706 . . . . . . . . 9  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( x  +  1 )  e.  ( ZZ>= `  M )
)
2625, 8eleqtrrdi 2299 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( x  +  1 )  e.  Z )
2713, 26syl 14 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x  +  1 )  e.  Z )
2819, 24, 27rspcdva 2882 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  ( F `  ( x  +  1 ) )  e.  S )
2917, 14, 28caovcld 6102 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
y  .+  ( F `  ( x  +  1 ) ) )  e.  S )
30 fvoveq1 5969 . . . . . . 7  |-  ( z  =  x  ->  ( F `  ( z  +  1 ) )  =  ( F `  ( x  +  1
) ) )
3130oveq2d 5962 . . . . . 6  |-  ( z  =  x  ->  (
w  .+  ( F `  ( z  +  1 ) ) )  =  ( w  .+  ( F `  ( x  +  1 ) ) ) )
32 oveq1 5953 . . . . . 6  |-  ( w  =  y  ->  (
w  .+  ( F `  ( x  +  1 ) ) )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
33 eqid 2205 . . . . . 6  |-  ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) )  =  ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) )
3431, 32, 33ovmpog 6082 . . . . 5  |-  ( ( x  e.  ( ZZ>= `  M )  /\  y  e.  S  /\  (
y  .+  ( F `  ( x  +  1 ) ) )  e.  S )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
3513, 14, 29, 34syl3anc 1250 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
3635, 29eqeltrd 2282 . . 3  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  S )
37 iseqvalcbv 10606 . . 3  |- frec ( ( s  e.  ( ZZ>= `  M ) ,  t  e.  _V  |->  <. (
s  +  1 ) ,  ( s ( u  e.  ( ZZ>= `  M ) ,  v  e.  S  |->  ( v 
.+  ( F `  ( u  +  1
) ) ) ) t ) >. ) ,  <. M ,  ( F `  M )
>. )  = frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )
388eleq2i 2272 . . . . 5  |-  ( x  e.  Z  <->  x  e.  ( ZZ>= `  M )
)
3938, 4sylan2br 288 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
401, 37, 39, 15seq3val 10607 . . 3  |-  ( ph  ->  seq M (  .+  ,  F )  =  ran frec ( ( s  e.  (
ZZ>= `  M ) ,  t  e.  _V  |->  <.
( s  +  1 ) ,  ( s ( u  e.  (
ZZ>= `  M ) ,  v  e.  S  |->  ( v  .+  ( F `
 ( u  + 
1 ) ) ) ) t ) >.
) ,  <. M , 
( F `  M
) >. ) )
411, 10, 12, 36, 37, 40frecuzrdgtclt 10568 . 2  |-  ( ph  ->  seq M (  .+  ,  F ) : (
ZZ>= `  M ) --> S )
428a1i 9 . . 3  |-  ( ph  ->  Z  =  ( ZZ>= `  M ) )
4342feq2d 5415 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) : Z --> S  <->  seq M ( 
.+  ,  F ) : ( ZZ>= `  M
) --> S ) )
4441, 43mpbird 167 1  |-  ( ph  ->  seq M (  .+  ,  F ) : Z --> S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   _Vcvv 2772    C_ wss 3166   <.cop 3636   -->wf 5268   ` cfv 5272  (class class class)co 5946    e. cmpo 5948  freccfrec 6478   1c1 7928    + caddc 7930   ZZcz 9374   ZZ>=cuz 9650    seqcseq 10594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375  df-uz 9651  df-seqfrec 10595
This theorem is referenced by:  seq3p1  10612  seq3feq2  10623  seq3feq  10627  serf  10630  serfre  10631  seq3split  10635  seq3caopr2  10640  seq3f1olemqsumkj  10658  seq3homo  10674  seq3z  10675  seqfeq3  10676  seq3distr  10679  ser3ge0  10683  exp3vallem  10687  exp3val  10688  facnn  10874  fac0  10875  bcval5  10910  seq3coll  10989  seq3shft  11182  resqrexlemf  11351  prodf  11882  algrf  12400  pcmptcl  12698  nninfdclemf  12853  mulgval  13491  mulgfng  13493  mulgnnsubcl  13503  lgsval  15514  lgscllem  15517  lgsval4a  15532  lgsneg  15534  lgsdir  15545  lgsdilem2  15546  lgsdi  15547  lgsne0  15548
  Copyright terms: Public domain W3C validator