ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqf Unicode version

Theorem seqf 10234
Description: Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypotheses
Ref Expression
seqf.1  |-  Z  =  ( ZZ>= `  M )
seqf.2  |-  ( ph  ->  M  e.  ZZ )
seqf.3  |-  ( (
ph  /\  x  e.  Z )  ->  ( F `  x )  e.  S )
seqf.4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seqf  |-  ( ph  ->  seq M (  .+  ,  F ) : Z --> S )
Distinct variable groups:    x,  .+ , y    x, F, y    x, M, y    x, S, y   
x, Z    ph, x, y
Allowed substitution hint:    Z( y)

Proof of Theorem seqf
Dummy variables  a  b  s  t  w  z  u  v  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqf.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
2 fveq2 5421 . . . . 5  |-  ( x  =  M  ->  ( F `  x )  =  ( F `  M ) )
32eleq1d 2208 . . . 4  |-  ( x  =  M  ->  (
( F `  x
)  e.  S  <->  ( F `  M )  e.  S
) )
4 seqf.3 . . . . 5  |-  ( (
ph  /\  x  e.  Z )  ->  ( F `  x )  e.  S )
54ralrimiva 2505 . . . 4  |-  ( ph  ->  A. x  e.  Z  ( F `  x )  e.  S )
6 uzid 9340 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
71, 6syl 14 . . . . 5  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
8 seqf.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
97, 8eleqtrrdi 2233 . . . 4  |-  ( ph  ->  M  e.  Z )
103, 5, 9rspcdva 2794 . . 3  |-  ( ph  ->  ( F `  M
)  e.  S )
11 ssv 3119 . . . 4  |-  S  C_  _V
1211a1i 9 . . 3  |-  ( ph  ->  S  C_  _V )
13 simprl 520 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  x  e.  ( ZZ>= `  M )
)
14 simprr 521 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  y  e.  S )
15 seqf.4 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
1615caovclg 5923 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a  .+  b
)  e.  S )
1716adantlr 468 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= `  M )  /\  y  e.  S ) )  /\  ( a  e.  S  /\  b  e.  S
) )  ->  (
a  .+  b )  e.  S )
18 fveq2 5421 . . . . . . . 8  |-  ( c  =  ( x  + 
1 )  ->  ( F `  c )  =  ( F `  ( x  +  1
) ) )
1918eleq1d 2208 . . . . . . 7  |-  ( c  =  ( x  + 
1 )  ->  (
( F `  c
)  e.  S  <->  ( F `  ( x  +  1 ) )  e.  S
) )
20 fveq2 5421 . . . . . . . . . . 11  |-  ( x  =  c  ->  ( F `  x )  =  ( F `  c ) )
2120eleq1d 2208 . . . . . . . . . 10  |-  ( x  =  c  ->  (
( F `  x
)  e.  S  <->  ( F `  c )  e.  S
) )
2221cbvralv 2654 . . . . . . . . 9  |-  ( A. x  e.  Z  ( F `  x )  e.  S  <->  A. c  e.  Z  ( F `  c )  e.  S )
235, 22sylib 121 . . . . . . . 8  |-  ( ph  ->  A. c  e.  Z  ( F `  c )  e.  S )
2423adantr 274 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  A. c  e.  Z  ( F `  c )  e.  S
)
25 peano2uz 9378 . . . . . . . . 9  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( x  +  1 )  e.  ( ZZ>= `  M )
)
2625, 8eleqtrrdi 2233 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( x  +  1 )  e.  Z )
2713, 26syl 14 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x  +  1 )  e.  Z )
2819, 24, 27rspcdva 2794 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  ( F `  ( x  +  1 ) )  e.  S )
2917, 14, 28caovcld 5924 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
y  .+  ( F `  ( x  +  1 ) ) )  e.  S )
30 fvoveq1 5797 . . . . . . 7  |-  ( z  =  x  ->  ( F `  ( z  +  1 ) )  =  ( F `  ( x  +  1
) ) )
3130oveq2d 5790 . . . . . 6  |-  ( z  =  x  ->  (
w  .+  ( F `  ( z  +  1 ) ) )  =  ( w  .+  ( F `  ( x  +  1 ) ) ) )
32 oveq1 5781 . . . . . 6  |-  ( w  =  y  ->  (
w  .+  ( F `  ( x  +  1 ) ) )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
33 eqid 2139 . . . . . 6  |-  ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) )  =  ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) )
3431, 32, 33ovmpog 5905 . . . . 5  |-  ( ( x  e.  ( ZZ>= `  M )  /\  y  e.  S  /\  (
y  .+  ( F `  ( x  +  1 ) ) )  e.  S )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
3513, 14, 29, 34syl3anc 1216 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
3635, 29eqeltrd 2216 . . 3  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  S )
37 iseqvalcbv 10230 . . 3  |- frec ( ( s  e.  ( ZZ>= `  M ) ,  t  e.  _V  |->  <. (
s  +  1 ) ,  ( s ( u  e.  ( ZZ>= `  M ) ,  v  e.  S  |->  ( v 
.+  ( F `  ( u  +  1
) ) ) ) t ) >. ) ,  <. M ,  ( F `  M )
>. )  = frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )
388eleq2i 2206 . . . . 5  |-  ( x  e.  Z  <->  x  e.  ( ZZ>= `  M )
)
3938, 4sylan2br 286 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
401, 37, 39, 15seq3val 10231 . . 3  |-  ( ph  ->  seq M (  .+  ,  F )  =  ran frec ( ( s  e.  (
ZZ>= `  M ) ,  t  e.  _V  |->  <.
( s  +  1 ) ,  ( s ( u  e.  (
ZZ>= `  M ) ,  v  e.  S  |->  ( v  .+  ( F `
 ( u  + 
1 ) ) ) ) t ) >.
) ,  <. M , 
( F `  M
) >. ) )
411, 10, 12, 36, 37, 40frecuzrdgtclt 10194 . 2  |-  ( ph  ->  seq M (  .+  ,  F ) : (
ZZ>= `  M ) --> S )
428a1i 9 . . 3  |-  ( ph  ->  Z  =  ( ZZ>= `  M ) )
4342feq2d 5260 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) : Z --> S  <->  seq M ( 
.+  ,  F ) : ( ZZ>= `  M
) --> S ) )
4441, 43mpbird 166 1  |-  ( ph  ->  seq M (  .+  ,  F ) : Z --> S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   A.wral 2416   _Vcvv 2686    C_ wss 3071   <.cop 3530   -->wf 5119   ` cfv 5123  (class class class)co 5774    e. cmpo 5776  freccfrec 6287   1c1 7621    + caddc 7623   ZZcz 9054   ZZ>=cuz 9326    seqcseq 10218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-seqfrec 10219
This theorem is referenced by:  seq3p1  10235  seq3feq2  10243  seq3feq  10245  serf  10247  serfre  10248  seq3split  10252  seq3caopr2  10255  seq3f1olemqsumkj  10271  seq3homo  10283  seq3z  10284  seqfeq3  10285  seq3distr  10286  ser3ge0  10290  exp3vallem  10294  exp3val  10295  facnn  10473  fac0  10474  bcval5  10509  seq3coll  10585  seq3shft  10610  resqrexlemf  10779  prodf  11307  algrf  11726
  Copyright terms: Public domain W3C validator