ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqf Unicode version

Theorem seqf 10609
Description: Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypotheses
Ref Expression
seqf.1  |-  Z  =  ( ZZ>= `  M )
seqf.2  |-  ( ph  ->  M  e.  ZZ )
seqf.3  |-  ( (
ph  /\  x  e.  Z )  ->  ( F `  x )  e.  S )
seqf.4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seqf  |-  ( ph  ->  seq M (  .+  ,  F ) : Z --> S )
Distinct variable groups:    x,  .+ , y    x, F, y    x, M, y    x, S, y   
x, Z    ph, x, y
Allowed substitution hint:    Z( y)

Proof of Theorem seqf
Dummy variables  a  b  s  t  w  z  u  v  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqf.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
2 fveq2 5576 . . . . 5  |-  ( x  =  M  ->  ( F `  x )  =  ( F `  M ) )
32eleq1d 2274 . . . 4  |-  ( x  =  M  ->  (
( F `  x
)  e.  S  <->  ( F `  M )  e.  S
) )
4 seqf.3 . . . . 5  |-  ( (
ph  /\  x  e.  Z )  ->  ( F `  x )  e.  S )
54ralrimiva 2579 . . . 4  |-  ( ph  ->  A. x  e.  Z  ( F `  x )  e.  S )
6 uzid 9662 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
71, 6syl 14 . . . . 5  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
8 seqf.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
97, 8eleqtrrdi 2299 . . . 4  |-  ( ph  ->  M  e.  Z )
103, 5, 9rspcdva 2882 . . 3  |-  ( ph  ->  ( F `  M
)  e.  S )
11 ssv 3215 . . . 4  |-  S  C_  _V
1211a1i 9 . . 3  |-  ( ph  ->  S  C_  _V )
13 simprl 529 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  x  e.  ( ZZ>= `  M )
)
14 simprr 531 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  y  e.  S )
15 seqf.4 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
1615caovclg 6099 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a  .+  b
)  e.  S )
1716adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= `  M )  /\  y  e.  S ) )  /\  ( a  e.  S  /\  b  e.  S
) )  ->  (
a  .+  b )  e.  S )
18 fveq2 5576 . . . . . . . 8  |-  ( c  =  ( x  + 
1 )  ->  ( F `  c )  =  ( F `  ( x  +  1
) ) )
1918eleq1d 2274 . . . . . . 7  |-  ( c  =  ( x  + 
1 )  ->  (
( F `  c
)  e.  S  <->  ( F `  ( x  +  1 ) )  e.  S
) )
20 fveq2 5576 . . . . . . . . . . 11  |-  ( x  =  c  ->  ( F `  x )  =  ( F `  c ) )
2120eleq1d 2274 . . . . . . . . . 10  |-  ( x  =  c  ->  (
( F `  x
)  e.  S  <->  ( F `  c )  e.  S
) )
2221cbvralv 2738 . . . . . . . . 9  |-  ( A. x  e.  Z  ( F `  x )  e.  S  <->  A. c  e.  Z  ( F `  c )  e.  S )
235, 22sylib 122 . . . . . . . 8  |-  ( ph  ->  A. c  e.  Z  ( F `  c )  e.  S )
2423adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  A. c  e.  Z  ( F `  c )  e.  S
)
25 peano2uz 9704 . . . . . . . . 9  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( x  +  1 )  e.  ( ZZ>= `  M )
)
2625, 8eleqtrrdi 2299 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( x  +  1 )  e.  Z )
2713, 26syl 14 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x  +  1 )  e.  Z )
2819, 24, 27rspcdva 2882 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  ( F `  ( x  +  1 ) )  e.  S )
2917, 14, 28caovcld 6100 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
y  .+  ( F `  ( x  +  1 ) ) )  e.  S )
30 fvoveq1 5967 . . . . . . 7  |-  ( z  =  x  ->  ( F `  ( z  +  1 ) )  =  ( F `  ( x  +  1
) ) )
3130oveq2d 5960 . . . . . 6  |-  ( z  =  x  ->  (
w  .+  ( F `  ( z  +  1 ) ) )  =  ( w  .+  ( F `  ( x  +  1 ) ) ) )
32 oveq1 5951 . . . . . 6  |-  ( w  =  y  ->  (
w  .+  ( F `  ( x  +  1 ) ) )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
33 eqid 2205 . . . . . 6  |-  ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) )  =  ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) )
3431, 32, 33ovmpog 6080 . . . . 5  |-  ( ( x  e.  ( ZZ>= `  M )  /\  y  e.  S  /\  (
y  .+  ( F `  ( x  +  1 ) ) )  e.  S )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
3513, 14, 29, 34syl3anc 1250 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
3635, 29eqeltrd 2282 . . 3  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  S )
37 iseqvalcbv 10604 . . 3  |- frec ( ( s  e.  ( ZZ>= `  M ) ,  t  e.  _V  |->  <. (
s  +  1 ) ,  ( s ( u  e.  ( ZZ>= `  M ) ,  v  e.  S  |->  ( v 
.+  ( F `  ( u  +  1
) ) ) ) t ) >. ) ,  <. M ,  ( F `  M )
>. )  = frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )
388eleq2i 2272 . . . . 5  |-  ( x  e.  Z  <->  x  e.  ( ZZ>= `  M )
)
3938, 4sylan2br 288 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
401, 37, 39, 15seq3val 10605 . . 3  |-  ( ph  ->  seq M (  .+  ,  F )  =  ran frec ( ( s  e.  (
ZZ>= `  M ) ,  t  e.  _V  |->  <.
( s  +  1 ) ,  ( s ( u  e.  (
ZZ>= `  M ) ,  v  e.  S  |->  ( v  .+  ( F `
 ( u  + 
1 ) ) ) ) t ) >.
) ,  <. M , 
( F `  M
) >. ) )
411, 10, 12, 36, 37, 40frecuzrdgtclt 10566 . 2  |-  ( ph  ->  seq M (  .+  ,  F ) : (
ZZ>= `  M ) --> S )
428a1i 9 . . 3  |-  ( ph  ->  Z  =  ( ZZ>= `  M ) )
4342feq2d 5413 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) : Z --> S  <->  seq M ( 
.+  ,  F ) : ( ZZ>= `  M
) --> S ) )
4441, 43mpbird 167 1  |-  ( ph  ->  seq M (  .+  ,  F ) : Z --> S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   _Vcvv 2772    C_ wss 3166   <.cop 3636   -->wf 5267   ` cfv 5271  (class class class)co 5944    e. cmpo 5946  freccfrec 6476   1c1 7926    + caddc 7928   ZZcz 9372   ZZ>=cuz 9648    seqcseq 10592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-seqfrec 10593
This theorem is referenced by:  seq3p1  10610  seq3feq2  10621  seq3feq  10625  serf  10628  serfre  10629  seq3split  10633  seq3caopr2  10638  seq3f1olemqsumkj  10656  seq3homo  10672  seq3z  10673  seqfeq3  10674  seq3distr  10677  ser3ge0  10681  exp3vallem  10685  exp3val  10686  facnn  10872  fac0  10873  bcval5  10908  seq3coll  10987  seq3shft  11149  resqrexlemf  11318  prodf  11849  algrf  12367  pcmptcl  12665  nninfdclemf  12820  mulgval  13458  mulgfng  13460  mulgnnsubcl  13470  lgsval  15481  lgscllem  15484  lgsval4a  15499  lgsneg  15501  lgsdir  15512  lgsdilem2  15513  lgsdi  15514  lgsne0  15515
  Copyright terms: Public domain W3C validator