ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqf Unicode version

Theorem seqf 10686
Description: Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypotheses
Ref Expression
seqf.1  |-  Z  =  ( ZZ>= `  M )
seqf.2  |-  ( ph  ->  M  e.  ZZ )
seqf.3  |-  ( (
ph  /\  x  e.  Z )  ->  ( F `  x )  e.  S )
seqf.4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seqf  |-  ( ph  ->  seq M (  .+  ,  F ) : Z --> S )
Distinct variable groups:    x,  .+ , y    x, F, y    x, M, y    x, S, y   
x, Z    ph, x, y
Allowed substitution hint:    Z( y)

Proof of Theorem seqf
Dummy variables  a  b  s  t  w  z  u  v  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqf.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
2 fveq2 5627 . . . . 5  |-  ( x  =  M  ->  ( F `  x )  =  ( F `  M ) )
32eleq1d 2298 . . . 4  |-  ( x  =  M  ->  (
( F `  x
)  e.  S  <->  ( F `  M )  e.  S
) )
4 seqf.3 . . . . 5  |-  ( (
ph  /\  x  e.  Z )  ->  ( F `  x )  e.  S )
54ralrimiva 2603 . . . 4  |-  ( ph  ->  A. x  e.  Z  ( F `  x )  e.  S )
6 uzid 9736 . . . . . 6  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
71, 6syl 14 . . . . 5  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
8 seqf.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
97, 8eleqtrrdi 2323 . . . 4  |-  ( ph  ->  M  e.  Z )
103, 5, 9rspcdva 2912 . . 3  |-  ( ph  ->  ( F `  M
)  e.  S )
11 ssv 3246 . . . 4  |-  S  C_  _V
1211a1i 9 . . 3  |-  ( ph  ->  S  C_  _V )
13 simprl 529 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  x  e.  ( ZZ>= `  M )
)
14 simprr 531 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  y  e.  S )
15 seqf.4 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
1615caovclg 6158 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a  .+  b
)  e.  S )
1716adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= `  M )  /\  y  e.  S ) )  /\  ( a  e.  S  /\  b  e.  S
) )  ->  (
a  .+  b )  e.  S )
18 fveq2 5627 . . . . . . . 8  |-  ( c  =  ( x  + 
1 )  ->  ( F `  c )  =  ( F `  ( x  +  1
) ) )
1918eleq1d 2298 . . . . . . 7  |-  ( c  =  ( x  + 
1 )  ->  (
( F `  c
)  e.  S  <->  ( F `  ( x  +  1 ) )  e.  S
) )
20 fveq2 5627 . . . . . . . . . . 11  |-  ( x  =  c  ->  ( F `  x )  =  ( F `  c ) )
2120eleq1d 2298 . . . . . . . . . 10  |-  ( x  =  c  ->  (
( F `  x
)  e.  S  <->  ( F `  c )  e.  S
) )
2221cbvralv 2765 . . . . . . . . 9  |-  ( A. x  e.  Z  ( F `  x )  e.  S  <->  A. c  e.  Z  ( F `  c )  e.  S )
235, 22sylib 122 . . . . . . . 8  |-  ( ph  ->  A. c  e.  Z  ( F `  c )  e.  S )
2423adantr 276 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  A. c  e.  Z  ( F `  c )  e.  S
)
25 peano2uz 9778 . . . . . . . . 9  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( x  +  1 )  e.  ( ZZ>= `  M )
)
2625, 8eleqtrrdi 2323 . . . . . . . 8  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( x  +  1 )  e.  Z )
2713, 26syl 14 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x  +  1 )  e.  Z )
2819, 24, 27rspcdva 2912 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  ( F `  ( x  +  1 ) )  e.  S )
2917, 14, 28caovcld 6159 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
y  .+  ( F `  ( x  +  1 ) ) )  e.  S )
30 fvoveq1 6024 . . . . . . 7  |-  ( z  =  x  ->  ( F `  ( z  +  1 ) )  =  ( F `  ( x  +  1
) ) )
3130oveq2d 6017 . . . . . 6  |-  ( z  =  x  ->  (
w  .+  ( F `  ( z  +  1 ) ) )  =  ( w  .+  ( F `  ( x  +  1 ) ) ) )
32 oveq1 6008 . . . . . 6  |-  ( w  =  y  ->  (
w  .+  ( F `  ( x  +  1 ) ) )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
33 eqid 2229 . . . . . 6  |-  ( z  e.  ( ZZ>= `  M
) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) )  =  ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) )
3431, 32, 33ovmpog 6139 . . . . 5  |-  ( ( x  e.  ( ZZ>= `  M )  /\  y  e.  S  /\  (
y  .+  ( F `  ( x  +  1 ) ) )  e.  S )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
3513, 14, 29, 34syl3anc 1271 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
3635, 29eqeltrd 2306 . . 3  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  S
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  S )
37 iseqvalcbv 10681 . . 3  |- frec ( ( s  e.  ( ZZ>= `  M ) ,  t  e.  _V  |->  <. (
s  +  1 ) ,  ( s ( u  e.  ( ZZ>= `  M ) ,  v  e.  S  |->  ( v 
.+  ( F `  ( u  +  1
) ) ) ) t ) >. ) ,  <. M ,  ( F `  M )
>. )  = frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  S  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )
388eleq2i 2296 . . . . 5  |-  ( x  e.  Z  <->  x  e.  ( ZZ>= `  M )
)
3938, 4sylan2br 288 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
401, 37, 39, 15seq3val 10682 . . 3  |-  ( ph  ->  seq M (  .+  ,  F )  =  ran frec ( ( s  e.  (
ZZ>= `  M ) ,  t  e.  _V  |->  <.
( s  +  1 ) ,  ( s ( u  e.  (
ZZ>= `  M ) ,  v  e.  S  |->  ( v  .+  ( F `
 ( u  + 
1 ) ) ) ) t ) >.
) ,  <. M , 
( F `  M
) >. ) )
411, 10, 12, 36, 37, 40frecuzrdgtclt 10643 . 2  |-  ( ph  ->  seq M (  .+  ,  F ) : (
ZZ>= `  M ) --> S )
428a1i 9 . . 3  |-  ( ph  ->  Z  =  ( ZZ>= `  M ) )
4342feq2d 5461 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) : Z --> S  <->  seq M ( 
.+  ,  F ) : ( ZZ>= `  M
) --> S ) )
4441, 43mpbird 167 1  |-  ( ph  ->  seq M (  .+  ,  F ) : Z --> S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799    C_ wss 3197   <.cop 3669   -->wf 5314   ` cfv 5318  (class class class)co 6001    e. cmpo 6003  freccfrec 6536   1c1 8000    + caddc 8002   ZZcz 9446   ZZ>=cuz 9722    seqcseq 10669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-seqfrec 10670
This theorem is referenced by:  seq3p1  10687  seq3feq2  10698  seq3feq  10702  serf  10705  serfre  10706  seq3split  10710  seq3caopr2  10715  seq3f1olemqsumkj  10733  seq3homo  10749  seq3z  10750  seqfeq3  10751  seq3distr  10754  ser3ge0  10758  exp3vallem  10762  exp3val  10763  facnn  10949  fac0  10950  bcval5  10985  seq3coll  11064  seq3shft  11349  resqrexlemf  11518  prodf  12049  algrf  12567  pcmptcl  12865  nninfdclemf  13020  mulgval  13659  mulgfng  13661  mulgnnsubcl  13671  lgsval  15683  lgscllem  15686  lgsval4a  15701  lgsneg  15703  lgsdir  15714  lgsdilem2  15715  lgsdi  15716  lgsne0  15717
  Copyright terms: Public domain W3C validator