| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqf | Unicode version | ||
| Description: Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.) |
| Ref | Expression |
|---|---|
| seqf.1 |
|
| seqf.2 |
|
| seqf.3 |
|
| seqf.4 |
|
| Ref | Expression |
|---|---|
| seqf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqf.2 |
. . 3
| |
| 2 | fveq2 5578 |
. . . . 5
| |
| 3 | 2 | eleq1d 2274 |
. . . 4
|
| 4 | seqf.3 |
. . . . 5
| |
| 5 | 4 | ralrimiva 2579 |
. . . 4
|
| 6 | uzid 9664 |
. . . . . 6
| |
| 7 | 1, 6 | syl 14 |
. . . . 5
|
| 8 | seqf.1 |
. . . . 5
| |
| 9 | 7, 8 | eleqtrrdi 2299 |
. . . 4
|
| 10 | 3, 5, 9 | rspcdva 2882 |
. . 3
|
| 11 | ssv 3215 |
. . . 4
| |
| 12 | 11 | a1i 9 |
. . 3
|
| 13 | simprl 529 |
. . . . 5
| |
| 14 | simprr 531 |
. . . . 5
| |
| 15 | seqf.4 |
. . . . . . . 8
| |
| 16 | 15 | caovclg 6101 |
. . . . . . 7
|
| 17 | 16 | adantlr 477 |
. . . . . 6
|
| 18 | fveq2 5578 |
. . . . . . . 8
| |
| 19 | 18 | eleq1d 2274 |
. . . . . . 7
|
| 20 | fveq2 5578 |
. . . . . . . . . . 11
| |
| 21 | 20 | eleq1d 2274 |
. . . . . . . . . 10
|
| 22 | 21 | cbvralv 2738 |
. . . . . . . . 9
|
| 23 | 5, 22 | sylib 122 |
. . . . . . . 8
|
| 24 | 23 | adantr 276 |
. . . . . . 7
|
| 25 | peano2uz 9706 |
. . . . . . . . 9
| |
| 26 | 25, 8 | eleqtrrdi 2299 |
. . . . . . . 8
|
| 27 | 13, 26 | syl 14 |
. . . . . . 7
|
| 28 | 19, 24, 27 | rspcdva 2882 |
. . . . . 6
|
| 29 | 17, 14, 28 | caovcld 6102 |
. . . . 5
|
| 30 | fvoveq1 5969 |
. . . . . . 7
| |
| 31 | 30 | oveq2d 5962 |
. . . . . 6
|
| 32 | oveq1 5953 |
. . . . . 6
| |
| 33 | eqid 2205 |
. . . . . 6
| |
| 34 | 31, 32, 33 | ovmpog 6082 |
. . . . 5
|
| 35 | 13, 14, 29, 34 | syl3anc 1250 |
. . . 4
|
| 36 | 35, 29 | eqeltrd 2282 |
. . 3
|
| 37 | iseqvalcbv 10606 |
. . 3
| |
| 38 | 8 | eleq2i 2272 |
. . . . 5
|
| 39 | 38, 4 | sylan2br 288 |
. . . 4
|
| 40 | 1, 37, 39, 15 | seq3val 10607 |
. . 3
|
| 41 | 1, 10, 12, 36, 37, 40 | frecuzrdgtclt 10568 |
. 2
|
| 42 | 8 | a1i 9 |
. . 3
|
| 43 | 42 | feq2d 5415 |
. 2
|
| 44 | 41, 43 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-frec 6479 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-inn 9039 df-n0 9298 df-z 9375 df-uz 9651 df-seqfrec 10595 |
| This theorem is referenced by: seq3p1 10612 seq3feq2 10623 seq3feq 10627 serf 10630 serfre 10631 seq3split 10635 seq3caopr2 10640 seq3f1olemqsumkj 10658 seq3homo 10674 seq3z 10675 seqfeq3 10676 seq3distr 10679 ser3ge0 10683 exp3vallem 10687 exp3val 10688 facnn 10874 fac0 10875 bcval5 10910 seq3coll 10989 seq3shft 11182 resqrexlemf 11351 prodf 11882 algrf 12400 pcmptcl 12698 nninfdclemf 12853 mulgval 13491 mulgfng 13493 mulgnnsubcl 13503 lgsval 15514 lgscllem 15517 lgsval4a 15532 lgsneg 15534 lgsdir 15545 lgsdilem2 15546 lgsdi 15547 lgsne0 15548 |
| Copyright terms: Public domain | W3C validator |