| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqf | Unicode version | ||
| Description: Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.) |
| Ref | Expression |
|---|---|
| seqf.1 |
|
| seqf.2 |
|
| seqf.3 |
|
| seqf.4 |
|
| Ref | Expression |
|---|---|
| seqf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqf.2 |
. . 3
| |
| 2 | fveq2 5561 |
. . . . 5
| |
| 3 | 2 | eleq1d 2265 |
. . . 4
|
| 4 | seqf.3 |
. . . . 5
| |
| 5 | 4 | ralrimiva 2570 |
. . . 4
|
| 6 | uzid 9632 |
. . . . . 6
| |
| 7 | 1, 6 | syl 14 |
. . . . 5
|
| 8 | seqf.1 |
. . . . 5
| |
| 9 | 7, 8 | eleqtrrdi 2290 |
. . . 4
|
| 10 | 3, 5, 9 | rspcdva 2873 |
. . 3
|
| 11 | ssv 3206 |
. . . 4
| |
| 12 | 11 | a1i 9 |
. . 3
|
| 13 | simprl 529 |
. . . . 5
| |
| 14 | simprr 531 |
. . . . 5
| |
| 15 | seqf.4 |
. . . . . . . 8
| |
| 16 | 15 | caovclg 6080 |
. . . . . . 7
|
| 17 | 16 | adantlr 477 |
. . . . . 6
|
| 18 | fveq2 5561 |
. . . . . . . 8
| |
| 19 | 18 | eleq1d 2265 |
. . . . . . 7
|
| 20 | fveq2 5561 |
. . . . . . . . . . 11
| |
| 21 | 20 | eleq1d 2265 |
. . . . . . . . . 10
|
| 22 | 21 | cbvralv 2729 |
. . . . . . . . 9
|
| 23 | 5, 22 | sylib 122 |
. . . . . . . 8
|
| 24 | 23 | adantr 276 |
. . . . . . 7
|
| 25 | peano2uz 9674 |
. . . . . . . . 9
| |
| 26 | 25, 8 | eleqtrrdi 2290 |
. . . . . . . 8
|
| 27 | 13, 26 | syl 14 |
. . . . . . 7
|
| 28 | 19, 24, 27 | rspcdva 2873 |
. . . . . 6
|
| 29 | 17, 14, 28 | caovcld 6081 |
. . . . 5
|
| 30 | fvoveq1 5948 |
. . . . . . 7
| |
| 31 | 30 | oveq2d 5941 |
. . . . . 6
|
| 32 | oveq1 5932 |
. . . . . 6
| |
| 33 | eqid 2196 |
. . . . . 6
| |
| 34 | 31, 32, 33 | ovmpog 6061 |
. . . . 5
|
| 35 | 13, 14, 29, 34 | syl3anc 1249 |
. . . 4
|
| 36 | 35, 29 | eqeltrd 2273 |
. . 3
|
| 37 | iseqvalcbv 10568 |
. . 3
| |
| 38 | 8 | eleq2i 2263 |
. . . . 5
|
| 39 | 38, 4 | sylan2br 288 |
. . . 4
|
| 40 | 1, 37, 39, 15 | seq3val 10569 |
. . 3
|
| 41 | 1, 10, 12, 36, 37, 40 | frecuzrdgtclt 10530 |
. 2
|
| 42 | 8 | a1i 9 |
. . 3
|
| 43 | 42 | feq2d 5398 |
. 2
|
| 44 | 41, 43 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 df-seqfrec 10557 |
| This theorem is referenced by: seq3p1 10574 seq3feq2 10585 seq3feq 10589 serf 10592 serfre 10593 seq3split 10597 seq3caopr2 10602 seq3f1olemqsumkj 10620 seq3homo 10636 seq3z 10637 seqfeq3 10638 seq3distr 10641 ser3ge0 10645 exp3vallem 10649 exp3val 10650 facnn 10836 fac0 10837 bcval5 10872 seq3coll 10951 seq3shft 11020 resqrexlemf 11189 prodf 11720 algrf 12238 pcmptcl 12536 nninfdclemf 12691 mulgval 13328 mulgfng 13330 mulgnnsubcl 13340 lgsval 15329 lgscllem 15332 lgsval4a 15347 lgsneg 15349 lgsdir 15360 lgsdilem2 15361 lgsdi 15362 lgsne0 15363 |
| Copyright terms: Public domain | W3C validator |