| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqf | Unicode version | ||
| Description: Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.) |
| Ref | Expression |
|---|---|
| seqf.1 |
|
| seqf.2 |
|
| seqf.3 |
|
| seqf.4 |
|
| Ref | Expression |
|---|---|
| seqf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqf.2 |
. . 3
| |
| 2 | fveq2 5627 |
. . . . 5
| |
| 3 | 2 | eleq1d 2298 |
. . . 4
|
| 4 | seqf.3 |
. . . . 5
| |
| 5 | 4 | ralrimiva 2603 |
. . . 4
|
| 6 | uzid 9736 |
. . . . . 6
| |
| 7 | 1, 6 | syl 14 |
. . . . 5
|
| 8 | seqf.1 |
. . . . 5
| |
| 9 | 7, 8 | eleqtrrdi 2323 |
. . . 4
|
| 10 | 3, 5, 9 | rspcdva 2912 |
. . 3
|
| 11 | ssv 3246 |
. . . 4
| |
| 12 | 11 | a1i 9 |
. . 3
|
| 13 | simprl 529 |
. . . . 5
| |
| 14 | simprr 531 |
. . . . 5
| |
| 15 | seqf.4 |
. . . . . . . 8
| |
| 16 | 15 | caovclg 6158 |
. . . . . . 7
|
| 17 | 16 | adantlr 477 |
. . . . . 6
|
| 18 | fveq2 5627 |
. . . . . . . 8
| |
| 19 | 18 | eleq1d 2298 |
. . . . . . 7
|
| 20 | fveq2 5627 |
. . . . . . . . . . 11
| |
| 21 | 20 | eleq1d 2298 |
. . . . . . . . . 10
|
| 22 | 21 | cbvralv 2765 |
. . . . . . . . 9
|
| 23 | 5, 22 | sylib 122 |
. . . . . . . 8
|
| 24 | 23 | adantr 276 |
. . . . . . 7
|
| 25 | peano2uz 9778 |
. . . . . . . . 9
| |
| 26 | 25, 8 | eleqtrrdi 2323 |
. . . . . . . 8
|
| 27 | 13, 26 | syl 14 |
. . . . . . 7
|
| 28 | 19, 24, 27 | rspcdva 2912 |
. . . . . 6
|
| 29 | 17, 14, 28 | caovcld 6159 |
. . . . 5
|
| 30 | fvoveq1 6024 |
. . . . . . 7
| |
| 31 | 30 | oveq2d 6017 |
. . . . . 6
|
| 32 | oveq1 6008 |
. . . . . 6
| |
| 33 | eqid 2229 |
. . . . . 6
| |
| 34 | 31, 32, 33 | ovmpog 6139 |
. . . . 5
|
| 35 | 13, 14, 29, 34 | syl3anc 1271 |
. . . 4
|
| 36 | 35, 29 | eqeltrd 2306 |
. . 3
|
| 37 | iseqvalcbv 10681 |
. . 3
| |
| 38 | 8 | eleq2i 2296 |
. . . . 5
|
| 39 | 38, 4 | sylan2br 288 |
. . . 4
|
| 40 | 1, 37, 39, 15 | seq3val 10682 |
. . 3
|
| 41 | 1, 10, 12, 36, 37, 40 | frecuzrdgtclt 10643 |
. 2
|
| 42 | 8 | a1i 9 |
. . 3
|
| 43 | 42 | feq2d 5461 |
. 2
|
| 44 | 41, 43 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 df-seqfrec 10670 |
| This theorem is referenced by: seq3p1 10687 seq3feq2 10698 seq3feq 10702 serf 10705 serfre 10706 seq3split 10710 seq3caopr2 10715 seq3f1olemqsumkj 10733 seq3homo 10749 seq3z 10750 seqfeq3 10751 seq3distr 10754 ser3ge0 10758 exp3vallem 10762 exp3val 10763 facnn 10949 fac0 10950 bcval5 10985 seq3coll 11064 seq3shft 11349 resqrexlemf 11518 prodf 12049 algrf 12567 pcmptcl 12865 nninfdclemf 13020 mulgval 13659 mulgfng 13661 mulgnnsubcl 13671 lgsval 15683 lgscllem 15686 lgsval4a 15701 lgsneg 15703 lgsdir 15714 lgsdilem2 15715 lgsdi 15716 lgsne0 15717 |
| Copyright terms: Public domain | W3C validator |