| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > seqf | Unicode version | ||
| Description: Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.) | 
| Ref | Expression | 
|---|---|
| seqf.1 | 
 | 
| seqf.2 | 
 | 
| seqf.3 | 
 | 
| seqf.4 | 
 | 
| Ref | Expression | 
|---|---|
| seqf | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | seqf.2 | 
. . 3
 | |
| 2 | fveq2 5558 | 
. . . . 5
 | |
| 3 | 2 | eleq1d 2265 | 
. . . 4
 | 
| 4 | seqf.3 | 
. . . . 5
 | |
| 5 | 4 | ralrimiva 2570 | 
. . . 4
 | 
| 6 | uzid 9615 | 
. . . . . 6
 | |
| 7 | 1, 6 | syl 14 | 
. . . . 5
 | 
| 8 | seqf.1 | 
. . . . 5
 | |
| 9 | 7, 8 | eleqtrrdi 2290 | 
. . . 4
 | 
| 10 | 3, 5, 9 | rspcdva 2873 | 
. . 3
 | 
| 11 | ssv 3205 | 
. . . 4
 | |
| 12 | 11 | a1i 9 | 
. . 3
 | 
| 13 | simprl 529 | 
. . . . 5
 | |
| 14 | simprr 531 | 
. . . . 5
 | |
| 15 | seqf.4 | 
. . . . . . . 8
 | |
| 16 | 15 | caovclg 6076 | 
. . . . . . 7
 | 
| 17 | 16 | adantlr 477 | 
. . . . . 6
 | 
| 18 | fveq2 5558 | 
. . . . . . . 8
 | |
| 19 | 18 | eleq1d 2265 | 
. . . . . . 7
 | 
| 20 | fveq2 5558 | 
. . . . . . . . . . 11
 | |
| 21 | 20 | eleq1d 2265 | 
. . . . . . . . . 10
 | 
| 22 | 21 | cbvralv 2729 | 
. . . . . . . . 9
 | 
| 23 | 5, 22 | sylib 122 | 
. . . . . . . 8
 | 
| 24 | 23 | adantr 276 | 
. . . . . . 7
 | 
| 25 | peano2uz 9657 | 
. . . . . . . . 9
 | |
| 26 | 25, 8 | eleqtrrdi 2290 | 
. . . . . . . 8
 | 
| 27 | 13, 26 | syl 14 | 
. . . . . . 7
 | 
| 28 | 19, 24, 27 | rspcdva 2873 | 
. . . . . 6
 | 
| 29 | 17, 14, 28 | caovcld 6077 | 
. . . . 5
 | 
| 30 | fvoveq1 5945 | 
. . . . . . 7
 | |
| 31 | 30 | oveq2d 5938 | 
. . . . . 6
 | 
| 32 | oveq1 5929 | 
. . . . . 6
 | |
| 33 | eqid 2196 | 
. . . . . 6
 | |
| 34 | 31, 32, 33 | ovmpog 6057 | 
. . . . 5
 | 
| 35 | 13, 14, 29, 34 | syl3anc 1249 | 
. . . 4
 | 
| 36 | 35, 29 | eqeltrd 2273 | 
. . 3
 | 
| 37 | iseqvalcbv 10551 | 
. . 3
 | |
| 38 | 8 | eleq2i 2263 | 
. . . . 5
 | 
| 39 | 38, 4 | sylan2br 288 | 
. . . 4
 | 
| 40 | 1, 37, 39, 15 | seq3val 10552 | 
. . 3
 | 
| 41 | 1, 10, 12, 36, 37, 40 | frecuzrdgtclt 10513 | 
. 2
 | 
| 42 | 8 | a1i 9 | 
. . 3
 | 
| 43 | 42 | feq2d 5395 | 
. 2
 | 
| 44 | 41, 43 | mpbird 167 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-seqfrec 10540 | 
| This theorem is referenced by: seq3p1 10557 seq3feq2 10568 seq3feq 10572 serf 10575 serfre 10576 seq3split 10580 seq3caopr2 10585 seq3f1olemqsumkj 10603 seq3homo 10619 seq3z 10620 seqfeq3 10621 seq3distr 10624 ser3ge0 10628 exp3vallem 10632 exp3val 10633 facnn 10819 fac0 10820 bcval5 10855 seq3coll 10934 seq3shft 11003 resqrexlemf 11172 prodf 11703 algrf 12213 pcmptcl 12511 nninfdclemf 12666 mulgval 13252 mulgfng 13254 mulgnnsubcl 13264 lgsval 15245 lgscllem 15248 lgsval4a 15263 lgsneg 15265 lgsdir 15276 lgsdilem2 15277 lgsdi 15278 lgsne0 15279 | 
| Copyright terms: Public domain | W3C validator |