ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvmptclx Unicode version

Theorem dvmptclx 15386
Description: Closure lemma for dvmptmulx 15388 and other related theorems. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptadd.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dvmptadd.a  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  CC )
dvmptadd.b  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  V )
dvmptadd.da  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )
dvmptclx.ss  |-  ( ph  ->  X  C_  S )
Assertion
Ref Expression
dvmptclx  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  CC )
Distinct variable groups:    ph, x    x, S    x, V    x, X
Allowed substitution hints:    A( x)    B( x)

Proof of Theorem dvmptclx
StepHypRef Expression
1 dvmptadd.s . . . . 5  |-  ( ph  ->  S  e.  { RR ,  CC } )
2 cnex 8119 . . . . . . 7  |-  CC  e.  _V
32a1i 9 . . . . . 6  |-  ( ph  ->  CC  e.  _V )
41elexd 2813 . . . . . 6  |-  ( ph  ->  S  e.  _V )
5 dvmptadd.a . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  CC )
65fmpttd 5789 . . . . . 6  |-  ( ph  ->  ( x  e.  X  |->  A ) : X --> CC )
7 dvmptclx.ss . . . . . 6  |-  ( ph  ->  X  C_  S )
8 elpm2r 6811 . . . . . 6  |-  ( ( ( CC  e.  _V  /\  S  e.  _V )  /\  ( ( x  e.  X  |->  A ) : X --> CC  /\  X  C_  S ) )  -> 
( x  e.  X  |->  A )  e.  ( CC  ^pm  S )
)
93, 4, 6, 7, 8syl22anc 1272 . . . . 5  |-  ( ph  ->  ( x  e.  X  |->  A )  e.  ( CC  ^pm  S )
)
10 dvfgg 15356 . . . . 5  |-  ( ( S  e.  { RR ,  CC }  /\  (
x  e.  X  |->  A )  e.  ( CC 
^pm  S ) )  ->  ( S  _D  ( x  e.  X  |->  A ) ) : dom  ( S  _D  ( x  e.  X  |->  A ) ) --> CC )
111, 9, 10syl2anc 411 . . . 4  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  A ) ) : dom  ( S  _D  (
x  e.  X  |->  A ) ) --> CC )
12 dvmptadd.da . . . . . . 7  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  A ) )  =  ( x  e.  X  |->  B ) )
1312dmeqd 4924 . . . . . 6  |-  ( ph  ->  dom  ( S  _D  ( x  e.  X  |->  A ) )  =  dom  ( x  e.  X  |->  B ) )
14 dvmptadd.b . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  V )
1514ralrimiva 2603 . . . . . . 7  |-  ( ph  ->  A. x  e.  X  B  e.  V )
16 dmmptg 5225 . . . . . . 7  |-  ( A. x  e.  X  B  e.  V  ->  dom  (
x  e.  X  |->  B )  =  X )
1715, 16syl 14 . . . . . 6  |-  ( ph  ->  dom  ( x  e.  X  |->  B )  =  X )
1813, 17eqtrd 2262 . . . . 5  |-  ( ph  ->  dom  ( S  _D  ( x  e.  X  |->  A ) )  =  X )
1918feq2d 5460 . . . 4  |-  ( ph  ->  ( ( S  _D  ( x  e.  X  |->  A ) ) : dom  ( S  _D  ( x  e.  X  |->  A ) ) --> CC  <->  ( S  _D  ( x  e.  X  |->  A ) ) : X --> CC ) )
2011, 19mpbid 147 . . 3  |-  ( ph  ->  ( S  _D  (
x  e.  X  |->  A ) ) : X --> CC )
2112feq1d 5459 . . 3  |-  ( ph  ->  ( ( S  _D  ( x  e.  X  |->  A ) ) : X --> CC  <->  ( x  e.  X  |->  B ) : X --> CC ) )
2220, 21mpbid 147 . 2  |-  ( ph  ->  ( x  e.  X  |->  B ) : X --> CC )
2322fvmptelcdm 5787 1  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  CC )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799    C_ wss 3197   {cpr 3667    |-> cmpt 4144   dom cdm 4718   -->wf 5313  (class class class)co 6000    ^pm cpm 6794   CCcc 7993   RRcr 7994    _D cdv 15323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-map 6795  df-pm 6796  df-sup 7147  df-inf 7148  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-xneg 9964  df-xadd 9965  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-rest 13269  df-topgen 13288  df-psmet 14501  df-xmet 14502  df-met 14503  df-bl 14504  df-mopn 14505  df-top 14666  df-topon 14679  df-bases 14711  df-ntr 14764  df-limced 15324  df-dvap 15325
This theorem is referenced by:  dvmptmulx  15388  dvmptcmulcn  15389  dvmptnegcn  15390  dvmptsubcn  15391  dvmptcjx  15392
  Copyright terms: Public domain W3C validator