ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqf2 Unicode version

Theorem seqf2 10268
Description: Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 7-Jul-2023.)
Hypotheses
Ref Expression
seqcl2.1  |-  ( ph  ->  ( F `  M
)  e.  C )
seqcl2.2  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x  .+  y
)  e.  C )
seqf2.3  |-  Z  =  ( ZZ>= `  M )
seqf2.4  |-  ( ph  ->  M  e.  ZZ )
seqf2.5  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D
)
Assertion
Ref Expression
seqf2  |-  ( ph  ->  seq M (  .+  ,  F ) : Z --> C )
Distinct variable groups:    x,  .+ , y    x, C, y    x, D, y    x, F, y   
x, M, y    ph, x, y
Allowed substitution hints:    Z( x, y)

Proof of Theorem seqf2
Dummy variables  s  t  w  z  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqf2.4 . . 3  |-  ( ph  ->  M  e.  ZZ )
2 seqcl2.1 . . 3  |-  ( ph  ->  ( F `  M
)  e.  C )
3 ssv 3124 . . . 4  |-  C  C_  _V
43a1i 9 . . 3  |-  ( ph  ->  C  C_  _V )
5 seqf2.5 . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D
)
6 seqcl2.2 . . . 4  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x  .+  y
)  e.  C )
75, 6seqovcd 10267 . . 3  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  C )
8 iseqvalcbv 10261 . . 3  |- frec ( ( s  e.  ( ZZ>= `  M ) ,  t  e.  _V  |->  <. (
s  +  1 ) ,  ( s ( u  e.  ( ZZ>= `  M ) ,  v  e.  C  |->  ( v 
.+  ( F `  ( u  +  1
) ) ) ) t ) >. ) ,  <. M ,  ( F `  M )
>. )  = frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )
91, 8, 2, 6, 5seqvalcd 10263 . . 3  |-  ( ph  ->  seq M (  .+  ,  F )  =  ran frec ( ( s  e.  (
ZZ>= `  M ) ,  t  e.  _V  |->  <.
( s  +  1 ) ,  ( s ( u  e.  (
ZZ>= `  M ) ,  v  e.  C  |->  ( v  .+  ( F `
 ( u  + 
1 ) ) ) ) t ) >.
) ,  <. M , 
( F `  M
) >. ) )
101, 2, 4, 7, 8, 9frecuzrdgtclt 10225 . 2  |-  ( ph  ->  seq M (  .+  ,  F ) : (
ZZ>= `  M ) --> C )
11 seqf2.3 . . . 4  |-  Z  =  ( ZZ>= `  M )
1211a1i 9 . . 3  |-  ( ph  ->  Z  =  ( ZZ>= `  M ) )
1312feq2d 5268 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) : Z --> C  <->  seq M ( 
.+  ,  F ) : ( ZZ>= `  M
) --> C ) )
1410, 13mpbird 166 1  |-  ( ph  ->  seq M (  .+  ,  F ) : Z --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   _Vcvv 2689    C_ wss 3076   <.cop 3535   -->wf 5127   ` cfv 5131  (class class class)co 5782    e. cmpo 5784  freccfrec 6295   1c1 7645    + caddc 7647   ZZcz 9078   ZZ>=cuz 9350    seqcseq 10249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-seqfrec 10250
This theorem is referenced by:  seqp1cd  10270  ennnfonelemh  11953  ennnfonelemom  11957
  Copyright terms: Public domain W3C validator