ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feqmptd Unicode version

Theorem feqmptd 5571
Description: Deduction form of dffn5im 5563. (Contributed by Mario Carneiro, 8-Jan-2015.)
Hypothesis
Ref Expression
feqmptd.1  |-  ( ph  ->  F : A --> B )
Assertion
Ref Expression
feqmptd  |-  ( ph  ->  F  =  ( x  e.  A  |->  ( F `
 x ) ) )
Distinct variable groups:    x, A    x, F
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem feqmptd
StepHypRef Expression
1 feqmptd.1 . . 3  |-  ( ph  ->  F : A --> B )
2 ffn 5367 . . 3  |-  ( F : A --> B  ->  F  Fn  A )
31, 2syl 14 . 2  |-  ( ph  ->  F  Fn  A )
4 dffn5im 5563 . 2  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
53, 4syl 14 1  |-  ( ph  ->  F  =  ( x  e.  A  |->  ( F `
 x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    |-> cmpt 4066    Fn wfn 5213   -->wf 5214   ` cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226
This theorem is referenced by:  feqresmpt  5572  cofmpt  5687  fcoconst  5689  suppssof1  6102  ofco  6103  caofinvl  6107  caofcom  6108  mapxpen  6850  xpmapenlem  6851  cnrecnv  10921  grpinvcnv  12943  lmcn2  13865  cnmpt11f  13869  cnmpt21f  13877  cncfmpt1f  14169  negfcncf  14174  cnrehmeocntop  14178  dvcnp2cntop  14248  dvimulf  14255  dvcoapbr  14256  dvcj  14258  dvfre  14259  dvmptcjx  14271  dvef  14273
  Copyright terms: Public domain W3C validator