| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feqmptd | Unicode version | ||
| Description: Deduction form of dffn5im 5624. (Contributed by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| feqmptd.1 |
|
| Ref | Expression |
|---|---|
| feqmptd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feqmptd.1 |
. . 3
| |
| 2 | ffn 5425 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | dffn5im 5624 |
. 2
| |
| 5 | 3, 4 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 |
| This theorem is referenced by: feqresmpt 5633 cofmpt 5749 fcoconst 5751 suppssof1 6176 ofco 6177 caofinvl 6184 caofcom 6189 caofdig 6192 mapxpen 6945 xpmapenlem 6946 cnrecnv 11221 pwsplusgval 13127 pwsmulrval 13128 prdsidlem 13279 grpinvcnv 13400 pwsinvg 13444 pwssub 13445 mulgrhm2 14372 psrlinv 14446 psr1clfi 14450 lmcn2 14752 cnmpt11f 14756 cnmpt21f 14764 cncfmpt1f 15070 negfcncf 15078 cnrehmeocntop 15082 ivthreinc 15117 dvcnp2cntop 15171 dvimulf 15178 dvcoapbr 15179 dvcj 15181 dvfre 15182 dvmptcjx 15196 dvef 15199 plycolemc 15230 plyco 15231 plycjlemc 15232 dvply2g 15238 2omap 15932 |
| Copyright terms: Public domain | W3C validator |