Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > feqmptd | Unicode version |
Description: Deduction form of dffn5im 5553. (Contributed by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
feqmptd.1 |
Ref | Expression |
---|---|
feqmptd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feqmptd.1 | . . 3 | |
2 | ffn 5357 | . . 3 | |
3 | 1, 2 | syl 14 | . 2 |
4 | dffn5im 5553 | . 2 | |
5 | 3, 4 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1353 cmpt 4059 wfn 5203 wf 5204 cfv 5208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-fv 5216 |
This theorem is referenced by: feqresmpt 5562 cofmpt 5677 fcoconst 5679 suppssof1 6090 ofco 6091 caofinvl 6095 caofcom 6096 mapxpen 6838 xpmapenlem 6839 cnrecnv 10885 grpinvcnv 12797 lmcn2 13331 cnmpt11f 13335 cnmpt21f 13343 cncfmpt1f 13635 negfcncf 13640 cnrehmeocntop 13644 dvcnp2cntop 13714 dvimulf 13721 dvcoapbr 13722 dvcj 13724 dvfre 13725 dvmptcjx 13737 dvef 13739 |
Copyright terms: Public domain | W3C validator |