Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > feqmptd | Unicode version |
Description: Deduction form of dffn5im 5542. (Contributed by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
feqmptd.1 |
Ref | Expression |
---|---|
feqmptd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feqmptd.1 | . . 3 | |
2 | ffn 5347 | . . 3 | |
3 | 1, 2 | syl 14 | . 2 |
4 | dffn5im 5542 | . 2 | |
5 | 3, 4 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 cmpt 4050 wfn 5193 wf 5194 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 |
This theorem is referenced by: feqresmpt 5550 cofmpt 5665 fcoconst 5667 suppssof1 6078 ofco 6079 caofinvl 6083 caofcom 6084 mapxpen 6826 xpmapenlem 6827 cnrecnv 10874 grpinvcnv 12767 lmcn2 13074 cnmpt11f 13078 cnmpt21f 13086 cncfmpt1f 13378 negfcncf 13383 cnrehmeocntop 13387 dvcnp2cntop 13457 dvimulf 13464 dvcoapbr 13465 dvcj 13467 dvfre 13468 dvmptcjx 13480 dvef 13482 |
Copyright terms: Public domain | W3C validator |