ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feqmptd Unicode version

Theorem feqmptd 5687
Description: Deduction form of dffn5im 5679. (Contributed by Mario Carneiro, 8-Jan-2015.)
Hypothesis
Ref Expression
feqmptd.1  |-  ( ph  ->  F : A --> B )
Assertion
Ref Expression
feqmptd  |-  ( ph  ->  F  =  ( x  e.  A  |->  ( F `
 x ) ) )
Distinct variable groups:    x, A    x, F
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem feqmptd
StepHypRef Expression
1 feqmptd.1 . . 3  |-  ( ph  ->  F : A --> B )
2 ffn 5473 . . 3  |-  ( F : A --> B  ->  F  Fn  A )
31, 2syl 14 . 2  |-  ( ph  ->  F  Fn  A )
4 dffn5im 5679 . 2  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
53, 4syl 14 1  |-  ( ph  ->  F  =  ( x  e.  A  |->  ( F `
 x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    |-> cmpt 4145    Fn wfn 5313   -->wf 5314   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326
This theorem is referenced by:  feqresmpt  5688  cofmpt  5804  fcoconst  5806  suppssof1  6236  ofco  6237  caofinvl  6244  caofcom  6249  caofdig  6252  mapxpen  7009  xpmapenlem  7010  cnrecnv  11421  pwsplusgval  13328  pwsmulrval  13329  prdsidlem  13480  grpinvcnv  13601  pwsinvg  13645  pwssub  13646  mulgrhm2  14574  psrlinv  14648  psr1clfi  14652  lmcn2  14954  cnmpt11f  14958  cnmpt21f  14966  cncfmpt1f  15272  negfcncf  15280  cnrehmeocntop  15284  ivthreinc  15319  dvcnp2cntop  15373  dvimulf  15380  dvcoapbr  15381  dvcj  15383  dvfre  15384  dvmptcjx  15398  dvef  15401  plycolemc  15432  plyco  15433  plycjlemc  15434  dvply2g  15440  2omap  16359  pw1map  16361
  Copyright terms: Public domain W3C validator