| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feqmptd | Unicode version | ||
| Description: Deduction form of dffn5im 5647. (Contributed by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| feqmptd.1 |
|
| Ref | Expression |
|---|---|
| feqmptd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feqmptd.1 |
. . 3
| |
| 2 | ffn 5445 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | dffn5im 5647 |
. 2
| |
| 5 | 3, 4 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 |
| This theorem is referenced by: feqresmpt 5656 cofmpt 5772 fcoconst 5774 suppssof1 6199 ofco 6200 caofinvl 6207 caofcom 6212 caofdig 6215 mapxpen 6970 xpmapenlem 6971 cnrecnv 11336 pwsplusgval 13242 pwsmulrval 13243 prdsidlem 13394 grpinvcnv 13515 pwsinvg 13559 pwssub 13560 mulgrhm2 14487 psrlinv 14561 psr1clfi 14565 lmcn2 14867 cnmpt11f 14871 cnmpt21f 14879 cncfmpt1f 15185 negfcncf 15193 cnrehmeocntop 15197 ivthreinc 15232 dvcnp2cntop 15286 dvimulf 15293 dvcoapbr 15294 dvcj 15296 dvfre 15297 dvmptcjx 15311 dvef 15314 plycolemc 15345 plyco 15346 plycjlemc 15347 dvply2g 15353 2omap 16132 pw1map 16134 |
| Copyright terms: Public domain | W3C validator |