| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feqmptd | Unicode version | ||
| Description: Deduction form of dffn5im 5679. (Contributed by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| feqmptd.1 |
|
| Ref | Expression |
|---|---|
| feqmptd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feqmptd.1 |
. . 3
| |
| 2 | ffn 5473 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | dffn5im 5679 |
. 2
| |
| 5 | 3, 4 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 |
| This theorem is referenced by: feqresmpt 5688 cofmpt 5804 fcoconst 5806 suppssof1 6236 ofco 6237 caofinvl 6244 caofcom 6249 caofdig 6252 mapxpen 7009 xpmapenlem 7010 cnrecnv 11421 pwsplusgval 13328 pwsmulrval 13329 prdsidlem 13480 grpinvcnv 13601 pwsinvg 13645 pwssub 13646 mulgrhm2 14574 psrlinv 14648 psr1clfi 14652 lmcn2 14954 cnmpt11f 14958 cnmpt21f 14966 cncfmpt1f 15272 negfcncf 15280 cnrehmeocntop 15284 ivthreinc 15319 dvcnp2cntop 15373 dvimulf 15380 dvcoapbr 15381 dvcj 15383 dvfre 15384 dvmptcjx 15398 dvef 15401 plycolemc 15432 plyco 15433 plycjlemc 15434 dvply2g 15440 2omap 16359 pw1map 16361 |
| Copyright terms: Public domain | W3C validator |