ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimadmfo Unicode version

Theorem fimadmfo 5553
Description: A function is a function onto the image of its domain. (Contributed by AV, 1-Dec-2022.)
Assertion
Ref Expression
fimadmfo  |-  ( F : A --> B  ->  F : A -onto-> ( F
" A ) )

Proof of Theorem fimadmfo
StepHypRef Expression
1 fdm 5475 . 2  |-  ( F : A --> B  ->  dom  F  =  A )
2 ffn 5469 . . . . 5  |-  ( F : A --> B  ->  F  Fn  A )
32adantr 276 . . . 4  |-  ( ( F : A --> B  /\  dom  F  =  A )  ->  F  Fn  A
)
4 dffn4 5550 . . . 4  |-  ( F  Fn  A  <->  F : A -onto-> ran  F )
53, 4sylib 122 . . 3  |-  ( ( F : A --> B  /\  dom  F  =  A )  ->  F : A -onto-> ran  F )
6 imaeq2 5060 . . . . . . 7  |-  ( A  =  dom  F  -> 
( F " A
)  =  ( F
" dom  F )
)
7 imadmrn 5074 . . . . . . 7  |-  ( F
" dom  F )  =  ran  F
86, 7eqtrdi 2278 . . . . . 6  |-  ( A  =  dom  F  -> 
( F " A
)  =  ran  F
)
98eqcoms 2232 . . . . 5  |-  ( dom 
F  =  A  -> 
( F " A
)  =  ran  F
)
109adantl 277 . . . 4  |-  ( ( F : A --> B  /\  dom  F  =  A )  ->  ( F " A )  =  ran  F )
11 foeq3 5542 . . . 4  |-  ( ( F " A )  =  ran  F  -> 
( F : A -onto->
( F " A
)  <->  F : A -onto-> ran  F ) )
1210, 11syl 14 . . 3  |-  ( ( F : A --> B  /\  dom  F  =  A )  ->  ( F : A -onto-> ( F " A )  <->  F : A -onto-> ran  F ) )
135, 12mpbird 167 . 2  |-  ( ( F : A --> B  /\  dom  F  =  A )  ->  F : A -onto->
( F " A
) )
141, 13mpdan 421 1  |-  ( F : A --> B  ->  F : A -onto-> ( F
" A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395   dom cdm 4716   ran crn 4717   "cima 4719    Fn wfn 5309   -->wf 5310   -onto->wfo 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4722  df-cnv 4724  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-fn 5317  df-f 5318  df-fo 5320
This theorem is referenced by:  wrdsymb  11085
  Copyright terms: Public domain W3C validator