ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimadmfo Unicode version

Theorem fimadmfo 5518
Description: A function is a function onto the image of its domain. (Contributed by AV, 1-Dec-2022.)
Assertion
Ref Expression
fimadmfo  |-  ( F : A --> B  ->  F : A -onto-> ( F
" A ) )

Proof of Theorem fimadmfo
StepHypRef Expression
1 fdm 5440 . 2  |-  ( F : A --> B  ->  dom  F  =  A )
2 ffn 5434 . . . . 5  |-  ( F : A --> B  ->  F  Fn  A )
32adantr 276 . . . 4  |-  ( ( F : A --> B  /\  dom  F  =  A )  ->  F  Fn  A
)
4 dffn4 5515 . . . 4  |-  ( F  Fn  A  <->  F : A -onto-> ran  F )
53, 4sylib 122 . . 3  |-  ( ( F : A --> B  /\  dom  F  =  A )  ->  F : A -onto-> ran  F )
6 imaeq2 5026 . . . . . . 7  |-  ( A  =  dom  F  -> 
( F " A
)  =  ( F
" dom  F )
)
7 imadmrn 5040 . . . . . . 7  |-  ( F
" dom  F )  =  ran  F
86, 7eqtrdi 2255 . . . . . 6  |-  ( A  =  dom  F  -> 
( F " A
)  =  ran  F
)
98eqcoms 2209 . . . . 5  |-  ( dom 
F  =  A  -> 
( F " A
)  =  ran  F
)
109adantl 277 . . . 4  |-  ( ( F : A --> B  /\  dom  F  =  A )  ->  ( F " A )  =  ran  F )
11 foeq3 5507 . . . 4  |-  ( ( F " A )  =  ran  F  -> 
( F : A -onto->
( F " A
)  <->  F : A -onto-> ran  F ) )
1210, 11syl 14 . . 3  |-  ( ( F : A --> B  /\  dom  F  =  A )  ->  ( F : A -onto-> ( F " A )  <->  F : A -onto-> ran  F ) )
135, 12mpbird 167 . 2  |-  ( ( F : A --> B  /\  dom  F  =  A )  ->  F : A -onto->
( F " A
) )
141, 13mpdan 421 1  |-  ( F : A --> B  ->  F : A -onto-> ( F
" A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   dom cdm 4682   ran crn 4683   "cima 4685    Fn wfn 5274   -->wf 5275   -onto->wfo 5277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4169  ax-pow 4225  ax-pr 4260
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3622  df-sn 3643  df-pr 3644  df-op 3646  df-br 4051  df-opab 4113  df-xp 4688  df-cnv 4690  df-dm 4692  df-rn 4693  df-res 4694  df-ima 4695  df-fn 5282  df-f 5283  df-fo 5285
This theorem is referenced by:  wrdsymb  11038
  Copyright terms: Public domain W3C validator