![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fimadmfo | GIF version |
Description: A function is a function onto the image of its domain. (Contributed by AV, 1-Dec-2022.) |
Ref | Expression |
---|---|
fimadmfo | ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–onto→(𝐹 “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdm 5413 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
2 | ffn 5407 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
3 | 2 | adantr 276 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ dom 𝐹 = 𝐴) → 𝐹 Fn 𝐴) |
4 | dffn4 5486 | . . . 4 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) | |
5 | 3, 4 | sylib 122 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ dom 𝐹 = 𝐴) → 𝐹:𝐴–onto→ran 𝐹) |
6 | imaeq2 5005 | . . . . . . 7 ⊢ (𝐴 = dom 𝐹 → (𝐹 “ 𝐴) = (𝐹 “ dom 𝐹)) | |
7 | imadmrn 5019 | . . . . . . 7 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
8 | 6, 7 | eqtrdi 2245 | . . . . . 6 ⊢ (𝐴 = dom 𝐹 → (𝐹 “ 𝐴) = ran 𝐹) |
9 | 8 | eqcoms 2199 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) |
10 | 9 | adantl 277 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ dom 𝐹 = 𝐴) → (𝐹 “ 𝐴) = ran 𝐹) |
11 | foeq3 5478 | . . . 4 ⊢ ((𝐹 “ 𝐴) = ran 𝐹 → (𝐹:𝐴–onto→(𝐹 “ 𝐴) ↔ 𝐹:𝐴–onto→ran 𝐹)) | |
12 | 10, 11 | syl 14 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ dom 𝐹 = 𝐴) → (𝐹:𝐴–onto→(𝐹 “ 𝐴) ↔ 𝐹:𝐴–onto→ran 𝐹)) |
13 | 5, 12 | mpbird 167 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ dom 𝐹 = 𝐴) → 𝐹:𝐴–onto→(𝐹 “ 𝐴)) |
14 | 1, 13 | mpdan 421 | 1 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–onto→(𝐹 “ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 dom cdm 4663 ran crn 4664 “ cima 4666 Fn wfn 5253 ⟶wf 5254 –onto→wfo 5256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-fn 5261 df-f 5262 df-fo 5264 |
This theorem is referenced by: wrdsymb 10947 |
Copyright terms: Public domain | W3C validator |