ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftval Unicode version

Theorem fliftval 5779
Description: The value of the function  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
flift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
flift.3  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
fliftval.4  |-  ( x  =  Y  ->  A  =  C )
fliftval.5  |-  ( x  =  Y  ->  B  =  D )
fliftval.6  |-  ( ph  ->  Fun  F )
Assertion
Ref Expression
fliftval  |-  ( (
ph  /\  Y  e.  X )  ->  ( F `  C )  =  D )
Distinct variable groups:    x, C    x, R    x, Y    x, D    ph, x    x, X    x, S
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem fliftval
StepHypRef Expression
1 fliftval.6 . . 3  |-  ( ph  ->  Fun  F )
21adantr 274 . 2  |-  ( (
ph  /\  Y  e.  X )  ->  Fun  F )
3 simpr 109 . . . 4  |-  ( (
ph  /\  Y  e.  X )  ->  Y  e.  X )
4 eqidd 2171 . . . . 5  |-  ( ph  ->  D  =  D )
5 eqidd 2171 . . . . 5  |-  ( Y  e.  X  ->  C  =  C )
64, 5anim12ci 337 . . . 4  |-  ( (
ph  /\  Y  e.  X )  ->  ( C  =  C  /\  D  =  D )
)
7 fliftval.4 . . . . . . 7  |-  ( x  =  Y  ->  A  =  C )
87eqeq2d 2182 . . . . . 6  |-  ( x  =  Y  ->  ( C  =  A  <->  C  =  C ) )
9 fliftval.5 . . . . . . 7  |-  ( x  =  Y  ->  B  =  D )
109eqeq2d 2182 . . . . . 6  |-  ( x  =  Y  ->  ( D  =  B  <->  D  =  D ) )
118, 10anbi12d 470 . . . . 5  |-  ( x  =  Y  ->  (
( C  =  A  /\  D  =  B )  <->  ( C  =  C  /\  D  =  D ) ) )
1211rspcev 2834 . . . 4  |-  ( ( Y  e.  X  /\  ( C  =  C  /\  D  =  D
) )  ->  E. x  e.  X  ( C  =  A  /\  D  =  B ) )
133, 6, 12syl2anc 409 . . 3  |-  ( (
ph  /\  Y  e.  X )  ->  E. x  e.  X  ( C  =  A  /\  D  =  B ) )
14 flift.1 . . . . 5  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
15 flift.2 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
16 flift.3 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
1714, 15, 16fliftel 5772 . . . 4  |-  ( ph  ->  ( C F D  <->  E. x  e.  X  ( C  =  A  /\  D  =  B
) ) )
1817adantr 274 . . 3  |-  ( (
ph  /\  Y  e.  X )  ->  ( C F D  <->  E. x  e.  X  ( C  =  A  /\  D  =  B ) ) )
1913, 18mpbird 166 . 2  |-  ( (
ph  /\  Y  e.  X )  ->  C F D )
20 funbrfv 5535 . 2  |-  ( Fun 
F  ->  ( C F D  ->  ( F `
 C )  =  D ) )
212, 19, 20sylc 62 1  |-  ( (
ph  /\  Y  e.  X )  ->  ( F `  C )  =  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   E.wrex 2449   <.cop 3586   class class class wbr 3989    |-> cmpt 4050   ran crn 4612   Fun wfun 5192   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fv 5206
This theorem is referenced by:  qliftval  6599
  Copyright terms: Public domain W3C validator