ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftf Unicode version

Theorem fliftf 5767
Description: The domain and range of the function  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
flift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
flift.3  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
Assertion
Ref Expression
fliftf  |-  ( ph  ->  ( Fun  F  <->  F : ran  ( x  e.  X  |->  A ) --> S ) )
Distinct variable groups:    x, R    ph, x    x, X    x, S
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem fliftf
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . 5  |-  ( (
ph  /\  Fun  F )  ->  Fun  F )
2 flift.1 . . . . . . . . . . 11  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
3 flift.2 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
4 flift.3 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
52, 3, 4fliftel 5761 . . . . . . . . . 10  |-  ( ph  ->  ( y F z  <->  E. x  e.  X  ( y  =  A  /\  z  =  B ) ) )
65exbidv 1813 . . . . . . . . 9  |-  ( ph  ->  ( E. z  y F z  <->  E. z E. x  e.  X  ( y  =  A  /\  z  =  B ) ) )
76adantr 274 . . . . . . . 8  |-  ( (
ph  /\  Fun  F )  ->  ( E. z 
y F z  <->  E. z E. x  e.  X  ( y  =  A  /\  z  =  B ) ) )
8 rexcom4 2749 . . . . . . . . 9  |-  ( E. x  e.  X  E. z ( y  =  A  /\  z  =  B )  <->  E. z E. x  e.  X  ( y  =  A  /\  z  =  B ) )
9 19.42v 1894 . . . . . . . . . . . 12  |-  ( E. z ( y  =  A  /\  z  =  B )  <->  ( y  =  A  /\  E. z 
z  =  B ) )
10 elisset 2740 . . . . . . . . . . . . . 14  |-  ( B  e.  S  ->  E. z 
z  =  B )
114, 10syl 14 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  X )  ->  E. z 
z  =  B )
1211biantrud 302 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  X )  ->  (
y  =  A  <->  ( y  =  A  /\  E. z 
z  =  B ) ) )
139, 12bitr4id 198 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  ( E. z ( y  =  A  /\  z  =  B )  <->  y  =  A ) )
1413rexbidva 2463 . . . . . . . . . 10  |-  ( ph  ->  ( E. x  e.  X  E. z ( y  =  A  /\  z  =  B )  <->  E. x  e.  X  y  =  A ) )
1514adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  Fun  F )  ->  ( E. x  e.  X  E. z
( y  =  A  /\  z  =  B )  <->  E. x  e.  X  y  =  A )
)
168, 15bitr3id 193 . . . . . . . 8  |-  ( (
ph  /\  Fun  F )  ->  ( E. z E. x  e.  X  ( y  =  A  /\  z  =  B )  <->  E. x  e.  X  y  =  A )
)
177, 16bitrd 187 . . . . . . 7  |-  ( (
ph  /\  Fun  F )  ->  ( E. z 
y F z  <->  E. x  e.  X  y  =  A ) )
1817abbidv 2284 . . . . . 6  |-  ( (
ph  /\  Fun  F )  ->  { y  |  E. z  y F z }  =  {
y  |  E. x  e.  X  y  =  A } )
19 df-dm 4614 . . . . . 6  |-  dom  F  =  { y  |  E. z  y F z }
20 eqid 2165 . . . . . . 7  |-  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A )
2120rnmpt 4852 . . . . . 6  |-  ran  (
x  e.  X  |->  A )  =  { y  |  E. x  e.  X  y  =  A }
2218, 19, 213eqtr4g 2224 . . . . 5  |-  ( (
ph  /\  Fun  F )  ->  dom  F  =  ran  ( x  e.  X  |->  A ) )
23 df-fn 5191 . . . . 5  |-  ( F  Fn  ran  ( x  e.  X  |->  A )  <-> 
( Fun  F  /\  dom  F  =  ran  (
x  e.  X  |->  A ) ) )
241, 22, 23sylanbrc 414 . . . 4  |-  ( (
ph  /\  Fun  F )  ->  F  Fn  ran  ( x  e.  X  |->  A ) )
252, 3, 4fliftrel 5760 . . . . . . 7  |-  ( ph  ->  F  C_  ( R  X.  S ) )
2625adantr 274 . . . . . 6  |-  ( (
ph  /\  Fun  F )  ->  F  C_  ( R  X.  S ) )
27 rnss 4834 . . . . . 6  |-  ( F 
C_  ( R  X.  S )  ->  ran  F 
C_  ran  ( R  X.  S ) )
2826, 27syl 14 . . . . 5  |-  ( (
ph  /\  Fun  F )  ->  ran  F  C_  ran  ( R  X.  S
) )
29 rnxpss 5035 . . . . 5  |-  ran  ( R  X.  S )  C_  S
3028, 29sstrdi 3154 . . . 4  |-  ( (
ph  /\  Fun  F )  ->  ran  F  C_  S
)
31 df-f 5192 . . . 4  |-  ( F : ran  ( x  e.  X  |->  A ) --> S  <->  ( F  Fn  ran  ( x  e.  X  |->  A )  /\  ran  F 
C_  S ) )
3224, 30, 31sylanbrc 414 . . 3  |-  ( (
ph  /\  Fun  F )  ->  F : ran  ( x  e.  X  |->  A ) --> S )
3332ex 114 . 2  |-  ( ph  ->  ( Fun  F  ->  F : ran  ( x  e.  X  |->  A ) --> S ) )
34 ffun 5340 . 2  |-  ( F : ran  ( x  e.  X  |->  A ) --> S  ->  Fun  F )
3533, 34impbid1 141 1  |-  ( ph  ->  ( Fun  F  <->  F : ran  ( x  e.  X  |->  A ) --> S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343   E.wex 1480    e. wcel 2136   {cab 2151   E.wrex 2445    C_ wss 3116   <.cop 3579   class class class wbr 3982    |-> cmpt 4043    X. cxp 4602   dom cdm 4604   ran crn 4605   Fun wfun 5182    Fn wfn 5183   -->wf 5184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196
This theorem is referenced by:  qliftf  6586
  Copyright terms: Public domain W3C validator