ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftf Unicode version

Theorem fliftf 5794
Description: The domain and range of the function  F. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
flift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
flift.3  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
Assertion
Ref Expression
fliftf  |-  ( ph  ->  ( Fun  F  <->  F : ran  ( x  e.  X  |->  A ) --> S ) )
Distinct variable groups:    x, R    ph, x    x, X    x, S
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem fliftf
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . 5  |-  ( (
ph  /\  Fun  F )  ->  Fun  F )
2 flift.1 . . . . . . . . . . 11  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
3 flift.2 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
4 flift.3 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
52, 3, 4fliftel 5788 . . . . . . . . . 10  |-  ( ph  ->  ( y F z  <->  E. x  e.  X  ( y  =  A  /\  z  =  B ) ) )
65exbidv 1825 . . . . . . . . 9  |-  ( ph  ->  ( E. z  y F z  <->  E. z E. x  e.  X  ( y  =  A  /\  z  =  B ) ) )
76adantr 276 . . . . . . . 8  |-  ( (
ph  /\  Fun  F )  ->  ( E. z 
y F z  <->  E. z E. x  e.  X  ( y  =  A  /\  z  =  B ) ) )
8 rexcom4 2760 . . . . . . . . 9  |-  ( E. x  e.  X  E. z ( y  =  A  /\  z  =  B )  <->  E. z E. x  e.  X  ( y  =  A  /\  z  =  B ) )
9 19.42v 1906 . . . . . . . . . . . 12  |-  ( E. z ( y  =  A  /\  z  =  B )  <->  ( y  =  A  /\  E. z 
z  =  B ) )
10 elisset 2751 . . . . . . . . . . . . . 14  |-  ( B  e.  S  ->  E. z 
z  =  B )
114, 10syl 14 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  X )  ->  E. z 
z  =  B )
1211biantrud 304 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  X )  ->  (
y  =  A  <->  ( y  =  A  /\  E. z 
z  =  B ) ) )
139, 12bitr4id 199 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  ( E. z ( y  =  A  /\  z  =  B )  <->  y  =  A ) )
1413rexbidva 2474 . . . . . . . . . 10  |-  ( ph  ->  ( E. x  e.  X  E. z ( y  =  A  /\  z  =  B )  <->  E. x  e.  X  y  =  A ) )
1514adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  Fun  F )  ->  ( E. x  e.  X  E. z
( y  =  A  /\  z  =  B )  <->  E. x  e.  X  y  =  A )
)
168, 15bitr3id 194 . . . . . . . 8  |-  ( (
ph  /\  Fun  F )  ->  ( E. z E. x  e.  X  ( y  =  A  /\  z  =  B )  <->  E. x  e.  X  y  =  A )
)
177, 16bitrd 188 . . . . . . 7  |-  ( (
ph  /\  Fun  F )  ->  ( E. z 
y F z  <->  E. x  e.  X  y  =  A ) )
1817abbidv 2295 . . . . . 6  |-  ( (
ph  /\  Fun  F )  ->  { y  |  E. z  y F z }  =  {
y  |  E. x  e.  X  y  =  A } )
19 df-dm 4633 . . . . . 6  |-  dom  F  =  { y  |  E. z  y F z }
20 eqid 2177 . . . . . . 7  |-  ( x  e.  X  |->  A )  =  ( x  e.  X  |->  A )
2120rnmpt 4871 . . . . . 6  |-  ran  (
x  e.  X  |->  A )  =  { y  |  E. x  e.  X  y  =  A }
2218, 19, 213eqtr4g 2235 . . . . 5  |-  ( (
ph  /\  Fun  F )  ->  dom  F  =  ran  ( x  e.  X  |->  A ) )
23 df-fn 5215 . . . . 5  |-  ( F  Fn  ran  ( x  e.  X  |->  A )  <-> 
( Fun  F  /\  dom  F  =  ran  (
x  e.  X  |->  A ) ) )
241, 22, 23sylanbrc 417 . . . 4  |-  ( (
ph  /\  Fun  F )  ->  F  Fn  ran  ( x  e.  X  |->  A ) )
252, 3, 4fliftrel 5787 . . . . . . 7  |-  ( ph  ->  F  C_  ( R  X.  S ) )
2625adantr 276 . . . . . 6  |-  ( (
ph  /\  Fun  F )  ->  F  C_  ( R  X.  S ) )
27 rnss 4853 . . . . . 6  |-  ( F 
C_  ( R  X.  S )  ->  ran  F 
C_  ran  ( R  X.  S ) )
2826, 27syl 14 . . . . 5  |-  ( (
ph  /\  Fun  F )  ->  ran  F  C_  ran  ( R  X.  S
) )
29 rnxpss 5056 . . . . 5  |-  ran  ( R  X.  S )  C_  S
3028, 29sstrdi 3167 . . . 4  |-  ( (
ph  /\  Fun  F )  ->  ran  F  C_  S
)
31 df-f 5216 . . . 4  |-  ( F : ran  ( x  e.  X  |->  A ) --> S  <->  ( F  Fn  ran  ( x  e.  X  |->  A )  /\  ran  F 
C_  S ) )
3224, 30, 31sylanbrc 417 . . 3  |-  ( (
ph  /\  Fun  F )  ->  F : ran  ( x  e.  X  |->  A ) --> S )
3332ex 115 . 2  |-  ( ph  ->  ( Fun  F  ->  F : ran  ( x  e.  X  |->  A ) --> S ) )
34 ffun 5364 . 2  |-  ( F : ran  ( x  e.  X  |->  A ) --> S  ->  Fun  F )
3533, 34impbid1 142 1  |-  ( ph  ->  ( Fun  F  <->  F : ran  ( x  e.  X  |->  A ) --> S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1492    e. wcel 2148   {cab 2163   E.wrex 2456    C_ wss 3129   <.cop 3594   class class class wbr 4000    |-> cmpt 4061    X. cxp 4621   dom cdm 4623   ran crn 4624   Fun wfun 5206    Fn wfn 5207   -->wf 5208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220
This theorem is referenced by:  qliftf  6614
  Copyright terms: Public domain W3C validator