Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fliftf | Unicode version |
Description: The domain and range of the function . (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
flift.1 | |
flift.2 | |
flift.3 |
Ref | Expression |
---|---|
fliftf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . 5 | |
2 | flift.1 | . . . . . . . . . . 11 | |
3 | flift.2 | . . . . . . . . . . 11 | |
4 | flift.3 | . . . . . . . . . . 11 | |
5 | 2, 3, 4 | fliftel 5734 | . . . . . . . . . 10 |
6 | 5 | exbidv 1802 | . . . . . . . . 9 |
7 | 6 | adantr 274 | . . . . . . . 8 |
8 | rexcom4 2732 | . . . . . . . . 9 | |
9 | 19.42v 1883 | . . . . . . . . . . . 12 | |
10 | elisset 2723 | . . . . . . . . . . . . . 14 | |
11 | 4, 10 | syl 14 | . . . . . . . . . . . . 13 |
12 | 11 | biantrud 302 | . . . . . . . . . . . 12 |
13 | 9, 12 | bitr4id 198 | . . . . . . . . . . 11 |
14 | 13 | rexbidva 2451 | . . . . . . . . . 10 |
15 | 14 | adantr 274 | . . . . . . . . 9 |
16 | 8, 15 | bitr3id 193 | . . . . . . . 8 |
17 | 7, 16 | bitrd 187 | . . . . . . 7 |
18 | 17 | abbidv 2272 | . . . . . 6 |
19 | df-dm 4589 | . . . . . 6 | |
20 | eqid 2154 | . . . . . . 7 | |
21 | 20 | rnmpt 4827 | . . . . . 6 |
22 | 18, 19, 21 | 3eqtr4g 2212 | . . . . 5 |
23 | df-fn 5166 | . . . . 5 | |
24 | 1, 22, 23 | sylanbrc 414 | . . . 4 |
25 | 2, 3, 4 | fliftrel 5733 | . . . . . . 7 |
26 | 25 | adantr 274 | . . . . . 6 |
27 | rnss 4809 | . . . . . 6 | |
28 | 26, 27 | syl 14 | . . . . 5 |
29 | rnxpss 5010 | . . . . 5 | |
30 | 28, 29 | sstrdi 3136 | . . . 4 |
31 | df-f 5167 | . . . 4 | |
32 | 24, 30, 31 | sylanbrc 414 | . . 3 |
33 | 32 | ex 114 | . 2 |
34 | ffun 5315 | . 2 | |
35 | 33, 34 | impbid1 141 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1332 wex 1469 wcel 2125 cab 2140 wrex 2433 wss 3098 cop 3559 class class class wbr 3961 cmpt 4021 cxp 4577 cdm 4579 crn 4580 wfun 5157 wfn 5158 wf 5159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-rab 2441 df-v 2711 df-sbc 2934 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-opab 4022 df-mpt 4023 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-fv 5171 |
This theorem is referenced by: qliftf 6554 |
Copyright terms: Public domain | W3C validator |