| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fliftf | Unicode version | ||
| Description: The domain and range of
the function |
| Ref | Expression |
|---|---|
| flift.1 |
|
| flift.2 |
|
| flift.3 |
|
| Ref | Expression |
|---|---|
| fliftf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . . 5
| |
| 2 | flift.1 |
. . . . . . . . . . 11
| |
| 3 | flift.2 |
. . . . . . . . . . 11
| |
| 4 | flift.3 |
. . . . . . . . . . 11
| |
| 5 | 2, 3, 4 | fliftel 5916 |
. . . . . . . . . 10
|
| 6 | 5 | exbidv 1871 |
. . . . . . . . 9
|
| 7 | 6 | adantr 276 |
. . . . . . . 8
|
| 8 | rexcom4 2823 |
. . . . . . . . 9
| |
| 9 | 19.42v 1953 |
. . . . . . . . . . . 12
| |
| 10 | elisset 2814 |
. . . . . . . . . . . . . 14
| |
| 11 | 4, 10 | syl 14 |
. . . . . . . . . . . . 13
|
| 12 | 11 | biantrud 304 |
. . . . . . . . . . . 12
|
| 13 | 9, 12 | bitr4id 199 |
. . . . . . . . . . 11
|
| 14 | 13 | rexbidva 2527 |
. . . . . . . . . 10
|
| 15 | 14 | adantr 276 |
. . . . . . . . 9
|
| 16 | 8, 15 | bitr3id 194 |
. . . . . . . 8
|
| 17 | 7, 16 | bitrd 188 |
. . . . . . 7
|
| 18 | 17 | abbidv 2347 |
. . . . . 6
|
| 19 | df-dm 4728 |
. . . . . 6
| |
| 20 | eqid 2229 |
. . . . . . 7
| |
| 21 | 20 | rnmpt 4971 |
. . . . . 6
|
| 22 | 18, 19, 21 | 3eqtr4g 2287 |
. . . . 5
|
| 23 | df-fn 5320 |
. . . . 5
| |
| 24 | 1, 22, 23 | sylanbrc 417 |
. . . 4
|
| 25 | 2, 3, 4 | fliftrel 5915 |
. . . . . . 7
|
| 26 | 25 | adantr 276 |
. . . . . 6
|
| 27 | rnss 4953 |
. . . . . 6
| |
| 28 | 26, 27 | syl 14 |
. . . . 5
|
| 29 | rnxpss 5159 |
. . . . 5
| |
| 30 | 28, 29 | sstrdi 3236 |
. . . 4
|
| 31 | df-f 5321 |
. . . 4
| |
| 32 | 24, 30, 31 | sylanbrc 417 |
. . 3
|
| 33 | 32 | ex 115 |
. 2
|
| 34 | ffun 5475 |
. 2
| |
| 35 | 33, 34 | impbid1 142 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 |
| This theorem is referenced by: qliftf 6765 |
| Copyright terms: Public domain | W3C validator |