Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fliftf | Unicode version |
Description: The domain and range of the function . (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
flift.1 | |
flift.2 | |
flift.3 |
Ref | Expression |
---|---|
fliftf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . . . . 5 | |
2 | flift.1 | . . . . . . . . . . 11 | |
3 | flift.2 | . . . . . . . . . . 11 | |
4 | flift.3 | . . . . . . . . . . 11 | |
5 | 2, 3, 4 | fliftel 5761 | . . . . . . . . . 10 |
6 | 5 | exbidv 1813 | . . . . . . . . 9 |
7 | 6 | adantr 274 | . . . . . . . 8 |
8 | rexcom4 2749 | . . . . . . . . 9 | |
9 | 19.42v 1894 | . . . . . . . . . . . 12 | |
10 | elisset 2740 | . . . . . . . . . . . . . 14 | |
11 | 4, 10 | syl 14 | . . . . . . . . . . . . 13 |
12 | 11 | biantrud 302 | . . . . . . . . . . . 12 |
13 | 9, 12 | bitr4id 198 | . . . . . . . . . . 11 |
14 | 13 | rexbidva 2463 | . . . . . . . . . 10 |
15 | 14 | adantr 274 | . . . . . . . . 9 |
16 | 8, 15 | bitr3id 193 | . . . . . . . 8 |
17 | 7, 16 | bitrd 187 | . . . . . . 7 |
18 | 17 | abbidv 2284 | . . . . . 6 |
19 | df-dm 4614 | . . . . . 6 | |
20 | eqid 2165 | . . . . . . 7 | |
21 | 20 | rnmpt 4852 | . . . . . 6 |
22 | 18, 19, 21 | 3eqtr4g 2224 | . . . . 5 |
23 | df-fn 5191 | . . . . 5 | |
24 | 1, 22, 23 | sylanbrc 414 | . . . 4 |
25 | 2, 3, 4 | fliftrel 5760 | . . . . . . 7 |
26 | 25 | adantr 274 | . . . . . 6 |
27 | rnss 4834 | . . . . . 6 | |
28 | 26, 27 | syl 14 | . . . . 5 |
29 | rnxpss 5035 | . . . . 5 | |
30 | 28, 29 | sstrdi 3154 | . . . 4 |
31 | df-f 5192 | . . . 4 | |
32 | 24, 30, 31 | sylanbrc 414 | . . 3 |
33 | 32 | ex 114 | . 2 |
34 | ffun 5340 | . 2 | |
35 | 33, 34 | impbid1 141 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 cab 2151 wrex 2445 wss 3116 cop 3579 class class class wbr 3982 cmpt 4043 cxp 4602 cdm 4604 crn 4605 wfun 5182 wfn 5183 wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 |
This theorem is referenced by: qliftf 6586 |
Copyright terms: Public domain | W3C validator |