ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftfuns Unicode version

Theorem fliftfuns 5890
Description: The function  F is the unique function defined by  F `  A  =  B, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
flift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
flift.3  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
Assertion
Ref Expression
fliftfuns  |-  ( ph  ->  ( Fun  F  <->  A. y  e.  X  A. z  e.  X  ( [_ y  /  x ]_ A  =  [_ z  /  x ]_ A  ->  [_ y  /  x ]_ B  = 
[_ z  /  x ]_ B ) ) )
Distinct variable groups:    y, z, A   
y, B, z    x, z, y, R    y, F, z    ph, x, y, z   
x, X, y, z   
x, S, y, z
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem fliftfuns
StepHypRef Expression
1 flift.1 . . 3  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
2 nfcv 2350 . . . . 5  |-  F/_ y <. A ,  B >.
3 nfcsb1v 3134 . . . . . 6  |-  F/_ x [_ y  /  x ]_ A
4 nfcsb1v 3134 . . . . . 6  |-  F/_ x [_ y  /  x ]_ B
53, 4nfop 3849 . . . . 5  |-  F/_ x <. [_ y  /  x ]_ A ,  [_ y  /  x ]_ B >.
6 csbeq1a 3110 . . . . . 6  |-  ( x  =  y  ->  A  =  [_ y  /  x ]_ A )
7 csbeq1a 3110 . . . . . 6  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
86, 7opeq12d 3841 . . . . 5  |-  ( x  =  y  ->  <. A ,  B >.  =  <. [_ y  /  x ]_ A ,  [_ y  /  x ]_ B >. )
92, 5, 8cbvmpt 4155 . . . 4  |-  ( x  e.  X  |->  <. A ,  B >. )  =  ( y  e.  X  |->  <. [_ y  /  x ]_ A ,  [_ y  /  x ]_ B >. )
109rneqi 4925 . . 3  |-  ran  (
x  e.  X  |->  <. A ,  B >. )  =  ran  ( y  e.  X  |->  <. [_ y  /  x ]_ A ,  [_ y  /  x ]_ B >. )
111, 10eqtri 2228 . 2  |-  F  =  ran  ( y  e.  X  |->  <. [_ y  /  x ]_ A ,  [_ y  /  x ]_ B >. )
12 flift.2 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
1312ralrimiva 2581 . . 3  |-  ( ph  ->  A. x  e.  X  A  e.  R )
143nfel1 2361 . . . 4  |-  F/ x [_ y  /  x ]_ A  e.  R
156eleq1d 2276 . . . 4  |-  ( x  =  y  ->  ( A  e.  R  <->  [_ y  /  x ]_ A  e.  R
) )
1614, 15rspc 2878 . . 3  |-  ( y  e.  X  ->  ( A. x  e.  X  A  e.  R  ->  [_ y  /  x ]_ A  e.  R )
)
1713, 16mpan9 281 . 2  |-  ( (
ph  /\  y  e.  X )  ->  [_ y  /  x ]_ A  e.  R )
18 flift.3 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
1918ralrimiva 2581 . . 3  |-  ( ph  ->  A. x  e.  X  B  e.  S )
204nfel1 2361 . . . 4  |-  F/ x [_ y  /  x ]_ B  e.  S
217eleq1d 2276 . . . 4  |-  ( x  =  y  ->  ( B  e.  S  <->  [_ y  /  x ]_ B  e.  S
) )
2220, 21rspc 2878 . . 3  |-  ( y  e.  X  ->  ( A. x  e.  X  B  e.  S  ->  [_ y  /  x ]_ B  e.  S )
)
2319, 22mpan9 281 . 2  |-  ( (
ph  /\  y  e.  X )  ->  [_ y  /  x ]_ B  e.  S )
24 csbeq1 3104 . 2  |-  ( y  =  z  ->  [_ y  /  x ]_ A  = 
[_ z  /  x ]_ A )
25 csbeq1 3104 . 2  |-  ( y  =  z  ->  [_ y  /  x ]_ B  = 
[_ z  /  x ]_ B )
2611, 17, 23, 24, 25fliftfun 5888 1  |-  ( ph  ->  ( Fun  F  <->  A. y  e.  X  A. z  e.  X  ( [_ y  /  x ]_ A  =  [_ z  /  x ]_ A  ->  [_ y  /  x ]_ B  = 
[_ z  /  x ]_ B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   A.wral 2486   [_csb 3101   <.cop 3646    |-> cmpt 4121   ran crn 4694   Fun wfun 5284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator