Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fliftfuns | Unicode version |
Description: The function is the unique function defined by , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) |
Ref | Expression |
---|---|
flift.1 | |
flift.2 | |
flift.3 |
Ref | Expression |
---|---|
fliftfuns |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flift.1 | . . 3 | |
2 | nfcv 2308 | . . . . 5 | |
3 | nfcsb1v 3078 | . . . . . 6 | |
4 | nfcsb1v 3078 | . . . . . 6 | |
5 | 3, 4 | nfop 3774 | . . . . 5 |
6 | csbeq1a 3054 | . . . . . 6 | |
7 | csbeq1a 3054 | . . . . . 6 | |
8 | 6, 7 | opeq12d 3766 | . . . . 5 |
9 | 2, 5, 8 | cbvmpt 4077 | . . . 4 |
10 | 9 | rneqi 4832 | . . 3 |
11 | 1, 10 | eqtri 2186 | . 2 |
12 | flift.2 | . . . 4 | |
13 | 12 | ralrimiva 2539 | . . 3 |
14 | 3 | nfel1 2319 | . . . 4 |
15 | 6 | eleq1d 2235 | . . . 4 |
16 | 14, 15 | rspc 2824 | . . 3 |
17 | 13, 16 | mpan9 279 | . 2 |
18 | flift.3 | . . . 4 | |
19 | 18 | ralrimiva 2539 | . . 3 |
20 | 4 | nfel1 2319 | . . . 4 |
21 | 7 | eleq1d 2235 | . . . 4 |
22 | 20, 21 | rspc 2824 | . . 3 |
23 | 19, 22 | mpan9 279 | . 2 |
24 | csbeq1 3048 | . 2 | |
25 | csbeq1 3048 | . 2 | |
26 | 11, 17, 23, 24, 25 | fliftfun 5764 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 csb 3045 cop 3579 cmpt 4043 crn 4605 wfun 5182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |