ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftfuns Unicode version

Theorem fliftfuns 5921
Description: The function  F is the unique function defined by  F `  A  =  B, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
flift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
flift.3  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
Assertion
Ref Expression
fliftfuns  |-  ( ph  ->  ( Fun  F  <->  A. y  e.  X  A. z  e.  X  ( [_ y  /  x ]_ A  =  [_ z  /  x ]_ A  ->  [_ y  /  x ]_ B  = 
[_ z  /  x ]_ B ) ) )
Distinct variable groups:    y, z, A   
y, B, z    x, z, y, R    y, F, z    ph, x, y, z   
x, X, y, z   
x, S, y, z
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem fliftfuns
StepHypRef Expression
1 flift.1 . . 3  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
2 nfcv 2372 . . . . 5  |-  F/_ y <. A ,  B >.
3 nfcsb1v 3157 . . . . . 6  |-  F/_ x [_ y  /  x ]_ A
4 nfcsb1v 3157 . . . . . 6  |-  F/_ x [_ y  /  x ]_ B
53, 4nfop 3872 . . . . 5  |-  F/_ x <. [_ y  /  x ]_ A ,  [_ y  /  x ]_ B >.
6 csbeq1a 3133 . . . . . 6  |-  ( x  =  y  ->  A  =  [_ y  /  x ]_ A )
7 csbeq1a 3133 . . . . . 6  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
86, 7opeq12d 3864 . . . . 5  |-  ( x  =  y  ->  <. A ,  B >.  =  <. [_ y  /  x ]_ A ,  [_ y  /  x ]_ B >. )
92, 5, 8cbvmpt 4178 . . . 4  |-  ( x  e.  X  |->  <. A ,  B >. )  =  ( y  e.  X  |->  <. [_ y  /  x ]_ A ,  [_ y  /  x ]_ B >. )
109rneqi 4951 . . 3  |-  ran  (
x  e.  X  |->  <. A ,  B >. )  =  ran  ( y  e.  X  |->  <. [_ y  /  x ]_ A ,  [_ y  /  x ]_ B >. )
111, 10eqtri 2250 . 2  |-  F  =  ran  ( y  e.  X  |->  <. [_ y  /  x ]_ A ,  [_ y  /  x ]_ B >. )
12 flift.2 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
1312ralrimiva 2603 . . 3  |-  ( ph  ->  A. x  e.  X  A  e.  R )
143nfel1 2383 . . . 4  |-  F/ x [_ y  /  x ]_ A  e.  R
156eleq1d 2298 . . . 4  |-  ( x  =  y  ->  ( A  e.  R  <->  [_ y  /  x ]_ A  e.  R
) )
1614, 15rspc 2901 . . 3  |-  ( y  e.  X  ->  ( A. x  e.  X  A  e.  R  ->  [_ y  /  x ]_ A  e.  R )
)
1713, 16mpan9 281 . 2  |-  ( (
ph  /\  y  e.  X )  ->  [_ y  /  x ]_ A  e.  R )
18 flift.3 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
1918ralrimiva 2603 . . 3  |-  ( ph  ->  A. x  e.  X  B  e.  S )
204nfel1 2383 . . . 4  |-  F/ x [_ y  /  x ]_ B  e.  S
217eleq1d 2298 . . . 4  |-  ( x  =  y  ->  ( B  e.  S  <->  [_ y  /  x ]_ B  e.  S
) )
2220, 21rspc 2901 . . 3  |-  ( y  e.  X  ->  ( A. x  e.  X  B  e.  S  ->  [_ y  /  x ]_ B  e.  S )
)
2319, 22mpan9 281 . 2  |-  ( (
ph  /\  y  e.  X )  ->  [_ y  /  x ]_ B  e.  S )
24 csbeq1 3127 . 2  |-  ( y  =  z  ->  [_ y  /  x ]_ A  = 
[_ z  /  x ]_ A )
25 csbeq1 3127 . 2  |-  ( y  =  z  ->  [_ y  /  x ]_ B  = 
[_ z  /  x ]_ B )
2611, 17, 23, 24, 25fliftfun 5919 1  |-  ( ph  ->  ( Fun  F  <->  A. y  e.  X  A. z  e.  X  ( [_ y  /  x ]_ A  =  [_ z  /  x ]_ A  ->  [_ y  /  x ]_ B  = 
[_ z  /  x ]_ B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   [_csb 3124   <.cop 3669    |-> cmpt 4144   ran crn 4719   Fun wfun 5311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator