ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fliftfuns Unicode version

Theorem fliftfuns 5766
Description: The function  F is the unique function defined by  F `  A  =  B, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
flift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
flift.3  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
Assertion
Ref Expression
fliftfuns  |-  ( ph  ->  ( Fun  F  <->  A. y  e.  X  A. z  e.  X  ( [_ y  /  x ]_ A  =  [_ z  /  x ]_ A  ->  [_ y  /  x ]_ B  = 
[_ z  /  x ]_ B ) ) )
Distinct variable groups:    y, z, A   
y, B, z    x, z, y, R    y, F, z    ph, x, y, z   
x, X, y, z   
x, S, y, z
Allowed substitution hints:    A( x)    B( x)    F( x)

Proof of Theorem fliftfuns
StepHypRef Expression
1 flift.1 . . 3  |-  F  =  ran  ( x  e.  X  |->  <. A ,  B >. )
2 nfcv 2308 . . . . 5  |-  F/_ y <. A ,  B >.
3 nfcsb1v 3078 . . . . . 6  |-  F/_ x [_ y  /  x ]_ A
4 nfcsb1v 3078 . . . . . 6  |-  F/_ x [_ y  /  x ]_ B
53, 4nfop 3774 . . . . 5  |-  F/_ x <. [_ y  /  x ]_ A ,  [_ y  /  x ]_ B >.
6 csbeq1a 3054 . . . . . 6  |-  ( x  =  y  ->  A  =  [_ y  /  x ]_ A )
7 csbeq1a 3054 . . . . . 6  |-  ( x  =  y  ->  B  =  [_ y  /  x ]_ B )
86, 7opeq12d 3766 . . . . 5  |-  ( x  =  y  ->  <. A ,  B >.  =  <. [_ y  /  x ]_ A ,  [_ y  /  x ]_ B >. )
92, 5, 8cbvmpt 4077 . . . 4  |-  ( x  e.  X  |->  <. A ,  B >. )  =  ( y  e.  X  |->  <. [_ y  /  x ]_ A ,  [_ y  /  x ]_ B >. )
109rneqi 4832 . . 3  |-  ran  (
x  e.  X  |->  <. A ,  B >. )  =  ran  ( y  e.  X  |->  <. [_ y  /  x ]_ A ,  [_ y  /  x ]_ B >. )
111, 10eqtri 2186 . 2  |-  F  =  ran  ( y  e.  X  |->  <. [_ y  /  x ]_ A ,  [_ y  /  x ]_ B >. )
12 flift.2 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  R )
1312ralrimiva 2539 . . 3  |-  ( ph  ->  A. x  e.  X  A  e.  R )
143nfel1 2319 . . . 4  |-  F/ x [_ y  /  x ]_ A  e.  R
156eleq1d 2235 . . . 4  |-  ( x  =  y  ->  ( A  e.  R  <->  [_ y  /  x ]_ A  e.  R
) )
1614, 15rspc 2824 . . 3  |-  ( y  e.  X  ->  ( A. x  e.  X  A  e.  R  ->  [_ y  /  x ]_ A  e.  R )
)
1713, 16mpan9 279 . 2  |-  ( (
ph  /\  y  e.  X )  ->  [_ y  /  x ]_ A  e.  R )
18 flift.3 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  B  e.  S )
1918ralrimiva 2539 . . 3  |-  ( ph  ->  A. x  e.  X  B  e.  S )
204nfel1 2319 . . . 4  |-  F/ x [_ y  /  x ]_ B  e.  S
217eleq1d 2235 . . . 4  |-  ( x  =  y  ->  ( B  e.  S  <->  [_ y  /  x ]_ B  e.  S
) )
2220, 21rspc 2824 . . 3  |-  ( y  e.  X  ->  ( A. x  e.  X  B  e.  S  ->  [_ y  /  x ]_ B  e.  S )
)
2319, 22mpan9 279 . 2  |-  ( (
ph  /\  y  e.  X )  ->  [_ y  /  x ]_ B  e.  S )
24 csbeq1 3048 . 2  |-  ( y  =  z  ->  [_ y  /  x ]_ A  = 
[_ z  /  x ]_ A )
25 csbeq1 3048 . 2  |-  ( y  =  z  ->  [_ y  /  x ]_ B  = 
[_ z  /  x ]_ B )
2611, 17, 23, 24, 25fliftfun 5764 1  |-  ( ph  ->  ( Fun  F  <->  A. y  e.  X  A. z  e.  X  ( [_ y  /  x ]_ A  =  [_ z  /  x ]_ A  ->  [_ y  /  x ]_ B  = 
[_ z  /  x ]_ B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2444   [_csb 3045   <.cop 3579    |-> cmpt 4043   ran crn 4605   Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator