| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fliftfuns | Unicode version | ||
| Description: The function |
| Ref | Expression |
|---|---|
| flift.1 |
|
| flift.2 |
|
| flift.3 |
|
| Ref | Expression |
|---|---|
| fliftfuns |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flift.1 |
. . 3
| |
| 2 | nfcv 2348 |
. . . . 5
| |
| 3 | nfcsb1v 3126 |
. . . . . 6
| |
| 4 | nfcsb1v 3126 |
. . . . . 6
| |
| 5 | 3, 4 | nfop 3835 |
. . . . 5
|
| 6 | csbeq1a 3102 |
. . . . . 6
| |
| 7 | csbeq1a 3102 |
. . . . . 6
| |
| 8 | 6, 7 | opeq12d 3827 |
. . . . 5
|
| 9 | 2, 5, 8 | cbvmpt 4139 |
. . . 4
|
| 10 | 9 | rneqi 4906 |
. . 3
|
| 11 | 1, 10 | eqtri 2226 |
. 2
|
| 12 | flift.2 |
. . . 4
| |
| 13 | 12 | ralrimiva 2579 |
. . 3
|
| 14 | 3 | nfel1 2359 |
. . . 4
|
| 15 | 6 | eleq1d 2274 |
. . . 4
|
| 16 | 14, 15 | rspc 2871 |
. . 3
|
| 17 | 13, 16 | mpan9 281 |
. 2
|
| 18 | flift.3 |
. . . 4
| |
| 19 | 18 | ralrimiva 2579 |
. . 3
|
| 20 | 4 | nfel1 2359 |
. . . 4
|
| 21 | 7 | eleq1d 2274 |
. . . 4
|
| 22 | 20, 21 | rspc 2871 |
. . 3
|
| 23 | 19, 22 | mpan9 281 |
. 2
|
| 24 | csbeq1 3096 |
. 2
| |
| 25 | csbeq1 3096 |
. 2
| |
| 26 | 11, 17, 23, 24, 25 | fliftfun 5865 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |