![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnimapr | GIF version |
Description: The image of a pair under a function. (Contributed by Jeff Madsen, 6-Jan-2011.) |
Ref | Expression |
---|---|
fnimapr | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐹 “ {𝐵, 𝐶}) = {(𝐹‘𝐵), (𝐹‘𝐶)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnsnfv 5616 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) | |
2 | 1 | 3adant3 1019 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) |
3 | fnsnfv 5616 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → {(𝐹‘𝐶)} = (𝐹 “ {𝐶})) | |
4 | 3 | 3adant2 1018 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → {(𝐹‘𝐶)} = (𝐹 “ {𝐶})) |
5 | 2, 4 | uneq12d 3314 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → ({(𝐹‘𝐵)} ∪ {(𝐹‘𝐶)}) = ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶}))) |
6 | 5 | eqcomd 2199 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶})) = ({(𝐹‘𝐵)} ∪ {(𝐹‘𝐶)})) |
7 | df-pr 3625 | . . . 4 ⊢ {𝐵, 𝐶} = ({𝐵} ∪ {𝐶}) | |
8 | 7 | imaeq2i 5003 | . . 3 ⊢ (𝐹 “ {𝐵, 𝐶}) = (𝐹 “ ({𝐵} ∪ {𝐶})) |
9 | imaundi 5078 | . . 3 ⊢ (𝐹 “ ({𝐵} ∪ {𝐶})) = ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶})) | |
10 | 8, 9 | eqtri 2214 | . 2 ⊢ (𝐹 “ {𝐵, 𝐶}) = ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶})) |
11 | df-pr 3625 | . 2 ⊢ {(𝐹‘𝐵), (𝐹‘𝐶)} = ({(𝐹‘𝐵)} ∪ {(𝐹‘𝐶)}) | |
12 | 6, 10, 11 | 3eqtr4g 2251 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐹 “ {𝐵, 𝐶}) = {(𝐹‘𝐵), (𝐹‘𝐶)}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ∪ cun 3151 {csn 3618 {cpr 3619 “ cima 4662 Fn wfn 5249 ‘cfv 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 |
This theorem is referenced by: fvinim0ffz 10308 |
Copyright terms: Public domain | W3C validator |