ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnimapr GIF version

Theorem fnimapr 5696
Description: The image of a pair under a function. (Contributed by Jeff Madsen, 6-Jan-2011.)
Assertion
Ref Expression
fnimapr ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → (𝐹 “ {𝐵, 𝐶}) = {(𝐹𝐵), (𝐹𝐶)})

Proof of Theorem fnimapr
StepHypRef Expression
1 fnsnfv 5695 . . . . 5 ((𝐹 Fn 𝐴𝐵𝐴) → {(𝐹𝐵)} = (𝐹 “ {𝐵}))
213adant3 1041 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → {(𝐹𝐵)} = (𝐹 “ {𝐵}))
3 fnsnfv 5695 . . . . 5 ((𝐹 Fn 𝐴𝐶𝐴) → {(𝐹𝐶)} = (𝐹 “ {𝐶}))
433adant2 1040 . . . 4 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → {(𝐹𝐶)} = (𝐹 “ {𝐶}))
52, 4uneq12d 3359 . . 3 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → ({(𝐹𝐵)} ∪ {(𝐹𝐶)}) = ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶})))
65eqcomd 2235 . 2 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶})) = ({(𝐹𝐵)} ∪ {(𝐹𝐶)}))
7 df-pr 3673 . . . 4 {𝐵, 𝐶} = ({𝐵} ∪ {𝐶})
87imaeq2i 5066 . . 3 (𝐹 “ {𝐵, 𝐶}) = (𝐹 “ ({𝐵} ∪ {𝐶}))
9 imaundi 5141 . . 3 (𝐹 “ ({𝐵} ∪ {𝐶})) = ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶}))
108, 9eqtri 2250 . 2 (𝐹 “ {𝐵, 𝐶}) = ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶}))
11 df-pr 3673 . 2 {(𝐹𝐵), (𝐹𝐶)} = ({(𝐹𝐵)} ∪ {(𝐹𝐶)})
126, 10, 113eqtr4g 2287 1 ((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → (𝐹 “ {𝐵, 𝐶}) = {(𝐹𝐵), (𝐹𝐶)})
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 1002   = wceq 1395  wcel 2200  cun 3195  {csn 3666  {cpr 3667  cima 4722   Fn wfn 5313  cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326
This theorem is referenced by:  en2  6981  fvinim0ffz  10455
  Copyright terms: Public domain W3C validator