| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnimapr | GIF version | ||
| Description: The image of a pair under a function. (Contributed by Jeff Madsen, 6-Jan-2011.) |
| Ref | Expression |
|---|---|
| fnimapr | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐹 “ {𝐵, 𝐶}) = {(𝐹‘𝐵), (𝐹‘𝐶)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnsnfv 5695 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) | |
| 2 | 1 | 3adant3 1041 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) |
| 3 | fnsnfv 5695 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → {(𝐹‘𝐶)} = (𝐹 “ {𝐶})) | |
| 4 | 3 | 3adant2 1040 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → {(𝐹‘𝐶)} = (𝐹 “ {𝐶})) |
| 5 | 2, 4 | uneq12d 3359 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → ({(𝐹‘𝐵)} ∪ {(𝐹‘𝐶)}) = ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶}))) |
| 6 | 5 | eqcomd 2235 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶})) = ({(𝐹‘𝐵)} ∪ {(𝐹‘𝐶)})) |
| 7 | df-pr 3673 | . . . 4 ⊢ {𝐵, 𝐶} = ({𝐵} ∪ {𝐶}) | |
| 8 | 7 | imaeq2i 5066 | . . 3 ⊢ (𝐹 “ {𝐵, 𝐶}) = (𝐹 “ ({𝐵} ∪ {𝐶})) |
| 9 | imaundi 5141 | . . 3 ⊢ (𝐹 “ ({𝐵} ∪ {𝐶})) = ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶})) | |
| 10 | 8, 9 | eqtri 2250 | . 2 ⊢ (𝐹 “ {𝐵, 𝐶}) = ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶})) |
| 11 | df-pr 3673 | . 2 ⊢ {(𝐹‘𝐵), (𝐹‘𝐶)} = ({(𝐹‘𝐵)} ∪ {(𝐹‘𝐶)}) | |
| 12 | 6, 10, 11 | 3eqtr4g 2287 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐹 “ {𝐵, 𝐶}) = {(𝐹‘𝐵), (𝐹‘𝐶)}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ∪ cun 3195 {csn 3666 {cpr 3667 “ cima 4722 Fn wfn 5313 ‘cfv 5318 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 |
| This theorem is referenced by: en2 6981 fvinim0ffz 10455 |
| Copyright terms: Public domain | W3C validator |