ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnsnfv Unicode version

Theorem fnsnfv 5545
Description: Singleton of function value. (Contributed by NM, 22-May-1998.)
Assertion
Ref Expression
fnsnfv  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  { ( F `  B ) }  =  ( F " { B } ) )

Proof of Theorem fnsnfv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqcom 2167 . . . 4  |-  ( y  =  ( F `  B )  <->  ( F `  B )  =  y )
2 fnbrfvb 5527 . . . 4  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  y  <-> 
B F y ) )
31, 2syl5bb 191 . . 3  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( y  =  ( F `  B )  <-> 
B F y ) )
43abbidv 2284 . 2  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  { y  |  y  =  ( F `  B ) }  =  { y  |  B F y } )
5 df-sn 3582 . . 3  |-  { ( F `  B ) }  =  { y  |  y  =  ( F `  B ) }
65a1i 9 . 2  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  { ( F `  B ) }  =  { y  |  y  =  ( F `  B ) } )
7 imasng 4969 . . 3  |-  ( B  e.  A  ->  ( F " { B }
)  =  { y  |  B F y } )
87adantl 275 . 2  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F " { B } )  =  {
y  |  B F y } )
94, 6, 83eqtr4d 2208 1  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  { ( F `  B ) }  =  ( F " { B } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   {cab 2151   {csn 3576   class class class wbr 3982   "cima 4607    Fn wfn 5183   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by:  fnimapr  5546  funfvdm  5549  fvco2  5555  fvimacnvi  5599  fsn2  5659  phplem4  6821  phplem4dom  6828  phplem4on  6833  fiintim  6894  fidcenumlemrks  6918  fidcenumlemr  6920  resunimafz0  10744  ennnfonelemhf1o  12346
  Copyright terms: Public domain W3C validator