ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnsnfv Unicode version

Theorem fnsnfv 5592
Description: Singleton of function value. (Contributed by NM, 22-May-1998.)
Assertion
Ref Expression
fnsnfv  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  { ( F `  B ) }  =  ( F " { B } ) )

Proof of Theorem fnsnfv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqcom 2191 . . . 4  |-  ( y  =  ( F `  B )  <->  ( F `  B )  =  y )
2 fnbrfvb 5573 . . . 4  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( ( F `  B )  =  y  <-> 
B F y ) )
31, 2bitrid 192 . . 3  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( y  =  ( F `  B )  <-> 
B F y ) )
43abbidv 2307 . 2  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  { y  |  y  =  ( F `  B ) }  =  { y  |  B F y } )
5 df-sn 3613 . . 3  |-  { ( F `  B ) }  =  { y  |  y  =  ( F `  B ) }
65a1i 9 . 2  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  { ( F `  B ) }  =  { y  |  y  =  ( F `  B ) } )
7 imasng 5008 . . 3  |-  ( B  e.  A  ->  ( F " { B }
)  =  { y  |  B F y } )
87adantl 277 . 2  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F " { B } )  =  {
y  |  B F y } )
94, 6, 83eqtr4d 2232 1  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  { ( F `  B ) }  =  ( F " { B } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   {cab 2175   {csn 3607   class class class wbr 4018   "cima 4644    Fn wfn 5227   ` cfv 5232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-fv 5240
This theorem is referenced by:  fnimapr  5593  funfvdm  5596  fvco2  5602  fvimacnvi  5647  fsn2  5707  phplem4  6878  phplem4dom  6885  phplem4on  6890  fiintim  6952  fidcenumlemrks  6977  fidcenumlemr  6979  resunimafz0  10838  ennnfonelemhf1o  12459
  Copyright terms: Public domain W3C validator