ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnrnfv Unicode version

Theorem fnrnfv 5564
Description: The range of a function expressed as a collection of the function's values. (Contributed by NM, 20-Oct-2005.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fnrnfv  |-  ( F  Fn  A  ->  ran  F  =  { y  |  E. x  e.  A  y  =  ( F `  x ) } )
Distinct variable groups:    x, y, A   
x, F, y

Proof of Theorem fnrnfv
StepHypRef Expression
1 dffn5im 5563 . . 3  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
21rneqd 4858 . 2  |-  ( F  Fn  A  ->  ran  F  =  ran  ( x  e.  A  |->  ( F `
 x ) ) )
3 eqid 2177 . . 3  |-  ( x  e.  A  |->  ( F `
 x ) )  =  ( x  e.  A  |->  ( F `  x ) )
43rnmpt 4877 . 2  |-  ran  (
x  e.  A  |->  ( F `  x ) )  =  { y  |  E. x  e.  A  y  =  ( F `  x ) }
52, 4eqtrdi 2226 1  |-  ( F  Fn  A  ->  ran  F  =  { y  |  E. x  e.  A  y  =  ( F `  x ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353   {cab 2163   E.wrex 2456    |-> cmpt 4066   ran crn 4629    Fn wfn 5213   ` cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226
This theorem is referenced by:  fvelrnb  5565  fniinfv  5576  dffo3  5665  fniunfv  5765  fnrnov  6022
  Copyright terms: Public domain W3C validator