ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnrnfv Unicode version

Theorem fnrnfv 5541
Description: The range of a function expressed as a collection of the function's values. (Contributed by NM, 20-Oct-2005.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fnrnfv  |-  ( F  Fn  A  ->  ran  F  =  { y  |  E. x  e.  A  y  =  ( F `  x ) } )
Distinct variable groups:    x, y, A   
x, F, y

Proof of Theorem fnrnfv
StepHypRef Expression
1 dffn5im 5540 . . 3  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
21rneqd 4838 . 2  |-  ( F  Fn  A  ->  ran  F  =  ran  ( x  e.  A  |->  ( F `
 x ) ) )
3 eqid 2170 . . 3  |-  ( x  e.  A  |->  ( F `
 x ) )  =  ( x  e.  A  |->  ( F `  x ) )
43rnmpt 4857 . 2  |-  ran  (
x  e.  A  |->  ( F `  x ) )  =  { y  |  E. x  e.  A  y  =  ( F `  x ) }
52, 4eqtrdi 2219 1  |-  ( F  Fn  A  ->  ran  F  =  { y  |  E. x  e.  A  y  =  ( F `  x ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   {cab 2156   E.wrex 2449    |-> cmpt 4048   ran crn 4610    Fn wfn 5191   ` cfv 5196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-iota 5158  df-fun 5198  df-fn 5199  df-fv 5204
This theorem is referenced by:  fvelrnb  5542  fniinfv  5552  dffo3  5641  fniunfv  5739  fnrnov  5996
  Copyright terms: Public domain W3C validator