ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnrnfv Unicode version

Theorem fnrnfv 5625
Description: The range of a function expressed as a collection of the function's values. (Contributed by NM, 20-Oct-2005.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fnrnfv  |-  ( F  Fn  A  ->  ran  F  =  { y  |  E. x  e.  A  y  =  ( F `  x ) } )
Distinct variable groups:    x, y, A   
x, F, y

Proof of Theorem fnrnfv
StepHypRef Expression
1 dffn5im 5624 . . 3  |-  ( F  Fn  A  ->  F  =  ( x  e.  A  |->  ( F `  x ) ) )
21rneqd 4907 . 2  |-  ( F  Fn  A  ->  ran  F  =  ran  ( x  e.  A  |->  ( F `
 x ) ) )
3 eqid 2205 . . 3  |-  ( x  e.  A  |->  ( F `
 x ) )  =  ( x  e.  A  |->  ( F `  x ) )
43rnmpt 4926 . 2  |-  ran  (
x  e.  A  |->  ( F `  x ) )  =  { y  |  E. x  e.  A  y  =  ( F `  x ) }
52, 4eqtrdi 2254 1  |-  ( F  Fn  A  ->  ran  F  =  { y  |  E. x  e.  A  y  =  ( F `  x ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   {cab 2191   E.wrex 2485    |-> cmpt 4105   ran crn 4676    Fn wfn 5266   ` cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279
This theorem is referenced by:  fvelrnb  5626  fniinfv  5637  dffo3  5727  fniunfv  5831  fnrnov  6092
  Copyright terms: Public domain W3C validator